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1. Introduction

Trigonometry —literally, “triangle measurement”— is the study of the interplay between two
wildly different notions of measurement: the lengths of segments and the sizes of angles.

As we all know, an angle is defined by a pair of rays emanating from a common point called the
vertex (V ). If we were to pick two points (A and B), one on each ray, the same distance from the
vertex, our Euclidean instincts might compel us to draw the line joining them; here, we’ll make do
with a segment. We might also draw a circle with center V passing through A and B, recognizing
the segment as a chord of that circle.

V

A B

(a) A chord spanning an angle.

V

A B

(b) The chord changes as the angle changes.

Figure 1. A chord associated with an angle.

The connection between the chord and the angle —between the length of the chord and the size
of the angle— is clearly fairly tight. (Provided that we’re always talking about A and B being the
same chosen distance from V ,) An angle with the smallest possible size (0◦) would yield a chord
with the shortest possible length (0); an angle of the largest possible size1 (180◦) would yield the
longest possible chord (with length equal to the diameter of the circle, which is twice the chosen
distance from A or B to V ); somewhere in there is a chord tied to the right angle (90◦), or to any
angle you prefer.

Note that, while the qualitative connection is clear —the wider the angle, the longer the chord—
the quantitative connection is extremely murky. The chord that “goes with” the 180◦ angle is not
twice as long as the chord that goes with the 90◦ angle; rather, it’s twice as long as the chord that
goes with the 60◦ angle! Part of understanding trigonometry is coming to grips with the seemingly
bizarre nature of that connection,2 but, for the moment, the point is that the connection exists: If
you know the size of the angle, then you can (somehow) infer the length of the chord, and vice-versa.
The connection, murky though it may be, makes the information virtually interchangeable, which
gives us problem-solving options.

That said, trigonometric tradition features not one, but six3 segments that “go with” an angle;
as it turns out, none of the segments is the chord described above (although they all relate to it).
Each trig segment its own special connection to the angle and offers its own special problem-solving
advantage (not to mention: disadvantages). These segments —more precisely, their lengths— give
rise to what we know as the standard trig functions and their curious names: sine, tangent, secant,

1For the purposes of this discussion, angles don’t get bigger than a straight angle.
2And that’s not easy! Although the connection had been studied and used for thousands of years, the formula for

converting angle sizes into chord lengths wasn’t known until Madhava at the turn of the 1400s in the East or Isaac
Newton in the 1670s in the West. (How do I cite the on-line Encyclopedia Britannica?) Before then, the state of the
art was effectively to compile look-up tables of values, a practice that hand-held calculators made obsolete only a few
decades ago.

3Actually, there were more (e.g., “versine” and “exsecant”), but they are no longer common use.
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cosine, cotangent, and cosecant. Sadly, many (if not most) modern treatments of trigonometry
introduce the trig functions without regard to the underlying segments, robbing those functions
of their geometry and their meaning, and, thus, making the subject appear arbitrary and cryptic
to students. This note seeks to restore the segments to prominence, combining them into a re-
markable figure called the Fundamental Trigonograph4 that promotes comprehension (not merely
memorization) of many fundamental principles of trigonometry.

2. The Fundamental Trigonograph

We’ll adopt a conventional setting by starting with the unit circle in the coordinate plane. That
is, consider a circle of radius 1, centered at the origin (O). For the time being, we’ll restrict our
attention to the First Quadrant, letting X and Y be the points where the circle crosses the x- and
y-axes, and choosing P to be a point somewhere in the quarter-circular arc between them. The
angle ∠XOP , which we’ll say has measure θ, is the focus of our attention.

P

X

Y

O

Figure 2. A First Quadrant angle.

The first of trig’s segments that “go with” θ is the perpendicular dropped from P to the x-axis.
Its seemingly unmotivated construction traces back to the segment of the Introduction: if we mirror
∠POX in the x-axis, then we see this segment as half of the chord spanning twice the angle θ.
Over the years, this semi-chord stole the mathematical spotlight from the full chord, and has come
to be known as the “sine segment”. (See Section 3.)

The second trig segment is the perpendicular “raised” from P to the x-axis. Being at right
angles to the circle’s radius OP , this segment is tangent to the circle, earning the name of tangent
segment.5

The third trig segment has already been determined: It joins the origin to the point where the
tangent segment meets the x-axis. As part of a line passing through the circle, it receives the name
secant segment.6

The lengths of these segments are as intimately connected to the size of the angle as the chord
discussed in the Introduction. Again, the exact formulaic connection is tricky (and beside the point
here), but the general sense is clear: bigger angles have longer segments, and to know the angle’s

4“Trigonograph” is this author’s name for a geometric diagram that illustrates a trigonometric relation or concept,
ideally in a way that makes things “obvious”. The term is a back-construction of the word-playful trigonography,
which could be taken to mean “the art of trigonometric visualization”.

5Alternatively, we could have defined this segment by raising a perpendicular from X to an extension of radius
OP . Doing this, and mirroring ∠POX as we did with sine, would reveal the segment to be half the tangent segment
spanning twice the angle θ in a natural way.

6If we think of this segment as being half of some other (an insight useful for sine and tangent), then that other
would be a proper secant segment, passing all the way through the circle.
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(a) sine (a semi-chord).

P

X

Y

O

(b) tangent (a tangent).

P

X

Y

O

(c) secant (a secant).

Figure 3. Three segments associated with ∠XOP .

size is to know each segment’s length (and vice-versa). We’ll cover specific observations about these
connections in later sections of this note.

The final three trig segments form (ahem) a perfect complement to the first three, because
they’re constructed in the same way, but relative to ∠POY , which is the complement of ∠POX:
the perpendicular dropped from P to the y-axis is the complementary sine —that is, the co-sine—
segment; the perpendicular raised from P to the y-axis is the complementary tangent (co-tangent)
segment; and the complementary secant (co-secant) segment joins origin to the intersection of the
co-tangent segment and the y-axis.

P

X

Y

O

(a) cosine (a semi-chord).

P

X

Y

O

(b) cotangent (a tangent).

P

X

Y

O

(c) cosecant (a secant).

Figure 4. Three co-segments associated with ∠XOP . (Equivalently, the three
“ordinary” segments associated with ∠XOP ’s complement, ∠Y OP ).

Together, these six segments, along with the radius segment OP of length 1, form the figure we
call the “Fundamental Trigonograph”. As we’ll see, the geometry of the segments neatly encodes
numerous properties of, and relationships among, the corresponding trigonometric functions.
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Until further notice, we restrict our attention to non-obtuse angles.

3. Etymological-Definitional Properties

The names of the six trig segments directly reflect their geometric origins, as described in the
previous section. In particular, each name expresses a relation to the defining unit circle in the
Fundamental Trigonograph:

The sine and cosine segments are semi-chords of the unit circle.7

The tangent and cotangent segments are tangents of the unit circle.
The secant and cosecant segments are secants of the unit circle.

Moreover, the “co” prefix (short for “complementary”) connects three of the segments to the
complement of the trigonograph’s defining angle. Abusing that prefix, we use “coθ” to mean “the
complement of θ”, so that we can write:

The cosine segment for θ is the sine segment for coθ. cos(θ) = sin(coθ)
The cotangant segment for θ is the tangent segment for coθ. cot(θ) = tan(coθ)
The cosecant segment for θ is the secant segment for coθ. csc(θ) = sec(coθ)

The trigonograph’s radius segment visually separates what we might call “ordinary elements”
(angle θ, and segments sine, tangent, secant) from “complementary elements” (coθ, cosine, cotan-
gent, cosecant); “complementing”, then, is merely a matter of jumping over the radius. Naturally,
jumping twice is like not jumping at all, a maxim reflected in the fact that the complement of an
angle’s complement is the angle itself (“cocoθ” is θ), as well as these relations:

The cosine segment for coθ is the sine segment for θ. cos(coθ) = sin(θ)
The cotangant segment for coθ is the tangent segment for θ. cot(coθ) = tan(θ)
The cosecant segment for coθ is the secant segment for θ. csc(coθ) = sec(θ)

Thus, when considered in their native geometrical context, the six trig values have names that
explain not only what they are, but also the very basics of how they relate. As we’ll see, that
geometrical context provides a wealth of additional information.

7We can blame medieval scholars for lack of obvious-ness here. The originally-obvious Sanskrit name ardha-jiva
(“half-chord”) shortened over time to jiva, which became the Arabic jiba, which was confused for jaib (“bay”) when
translated into Latin as sinus (“bay” or “fold”). See, for instance, “History of trigonometric functions” on Wikipedia.
http://en.wikipedia.org/w/index.php?title=History\_of\_Trigonometric\_functions\&oldid=85828396

5



4. Dynamic Properties

The Fundamental Trigonograph can be viewed as a dynamic figure, with its radius segment
actively sweeping through the entire quarter circle, creating every angle from the zero angle to the
right angle. All the while, the six trig segments grow and shrink in concert, exhibiting certain
patterns.

4.1. Fun-House Mirror Properties. The trigonograph’s radius segment —which is neither or-
dinary, nor complementary (or is it both?)— acts something like a fun-house mirror between the
two groups: through it, each trig element can see its co-element as a distorted version of itself, the
two of them growing or shrinking in opposing manners.

As θ gets larger (smaller), coθ gets smaller (larger).
As sine gets larger (smaller), cosine gets smaller (larger).
As tangent gets larger (smaller), cotangent gets smaller (larger).
As secant gets larger (smaller), cosecant gets smaller (larger).

Importantly, these observations are qualitative (“larger” vs “smaller”), not quantitative (“how much
larger” vs “how much smaller”).

Not only do the ordinaries simultaneously get larger or smaller than complementaries, at any
given time, they are:

The Herd Mentality Property
All ordinary elements are either simultaneously larger than,

simultaneously equal to, or simultaneously smaller than,
their respective co-ordinary elements.

In particular, co-elements match at the trigonograph’s “half-way” state, when θ and coθ are 45◦.

4.2. Range Properties. The Fundamental Trigonograph’s “extreme” states —when θ is a zero
angle or a right angle— feature trig segments at their smallest or largest. In these states, some trig
segments have collapsed into length-less points, others have coincided with the unit-length radius
segment, and yet others have extended into infinitely-long rays. The ranges of the corresponding
trig values are as follows:
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θ = 0◦ θ = 90◦ range

sine point radius 0 to 1

tangent point ray 0 to ∞
secant radius ray 1 to ∞
cosine radius point 1 to 0

cotangent ray point ∞ to 0

cosecant ray radius ∞ to 1

Table 1. Extreme states of the six trig segments.

As one should expect, the range of each element is the reverse of its co-element. Moreover, in
accordance with the fun-house mirror properties, as θ sweeps through its own range of 0◦ to 90◦,
ordinary elements strictly increase in their range, while complementary elements strictly decrease.

The Fundamental Trigonograph’s “half-way” state is a half-square, with the radius, tangent, and
cotangent segments appearing as congruent half-diagonals. Thus, at the beginning, middle, and
end of θ’s range, some pair of trig segments attain the length 1.

Interestingly, the ranges can be placed end-to-end in a chain, thusly:

0
0◦

sin 1
90◦

csc ∞
0◦

cot 0
90◦

cos 1
0◦

sec ∞
90◦

tan 0
0◦

which leads to a convenient way to sketch the graphs of all six trig values, without lifting one’s pen:
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5. Static Properties (Identities and Comparaties)

Perhaps the most-important feature of the Fundamental Trigonograph is that it contain six
similar right triangles (plus a duplicate), each having at least two trig segments as sides.

Each triangle contains the angle θ (and thus also coθ, not marked in the figure). We describe a
leg of the triangle as being either opposite (“opp”) or adjacent (“adj”) to angle θ, as shown in the
generic “opp-adj-hyp” triangle above (where “hyp”, of course, refers to the hypotenuse). We name
each triangle by the pair of trig segments it contains, as follows:

hypotenuse opposite leg adjacent leg

? sin-cos 1 sin cos

? tan-sec sec tan 1

? cot-csc csc 1 cot

sin-tan tan sec− cos sin

cos-cot cot cos csc− sin

sec-csc tan + cot sec csc

Table 2. The six triangles of the Fundamental Trigonograph.

The table groups each triangle with its complementary counterpart (sin-cos and sec-csc are their
own co-unterparts). The table also marks with “?” those triangles that have the radius segment
(that is, 1) as a side, as these have greatest significance to our work.

Leveraging geometric theorems regarding similar right triangles, we can derive a number of
key relations that hold in whatever state the Fundamental Trigonograph assumes. That is, the
relations hold regardless of the angle involved. When such a universal relation is an equality it is
called an “identity” (because the equated elements are considered logically identical, expressing the
same value in different ways). So far as this author knows, there’s no official term for a universal
comparison, so we’ll use the invented word “comparaty”. Let’s discuss those first.
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5.1. Comparaties. The Triangle Inequality is geometry’s most-basic expression that the shortest
distance between two points is a straight line, stating that it’s quicker to go from one vertex of a
triangle to another by their joining edge, rather than “the long way around” via the third vertex.

The Triangle Inequality
The sum of the lengths of two sides of a triangle

is greater than (or equal to8) the length of the third side.

a+ b ≥ c b+ c ≥ a c+ a ≥ b

For our triangles, this says that adj + hyp ≥ opp, opp+ hyp ≥ adj, and opp+ adj ≥ hyp. But our
triangles are right triangles, subject to a stricter rule:

The Hypotenuse Inequality
The hypotenuse is the longest side of a right triangle.

This allows us to strengthen the first two Triangle Inequality statements, so that we have

hyp ≥ opp hyp ≥ adj opp+ adj ≥ hyp

Table 3 lists the specific comparaties that arise from applying these facts to our triangles.

0◦ 90◦

? sin-cos 1 ≥ sin · 1 = 1

? sin-cos 1 ≥ cos 1 = 1 ·
? tan-sec sec ≥ 1 1 = 1 ·
? cot-csc csc ≥ 1 · 1 = 1

◦ tan-sec sec ≥ tan · “∞ =∞”

◦ cot-csc csc ≥ cot “∞ =∞” ·
◦ sin-tan tan ≥ sin 0 = 0 ·
◦ cos-cot cot ≥ cos · 0 = 0

tan-sec tan +1 ≥ sec 1 = 1 “∞ =∞”

cot-csc cot +1 ≥ csc “∞ =∞” 1 = 1

sin-cos sin + cos ≥ 1 1 = 1 1 = 1

sin-tan tan ≥ sec− cos 0 = 0 “∞ =∞”

cos-cot cot ≥ csc− sin “∞ =∞” 0 = 0

sin-tan sec− cos + sin ≥ tan 0 = 0 “∞ =∞”

cos-cot csc− sin + cos ≥ cot “∞ =∞” 0 = 0

sec-csc tan + cot ≥ sec “∞ =∞” “∞ =∞”

sec-csc cot + tan ≥ csc “∞ =∞” “∞ =∞”

sec-csc sec + csc ≥ tan + cot “∞ =∞” “∞ =∞”

Table 3. Eighteen comparaties, and grouped by significance and in complementary
pairs. In each case, if equality occurs at all, it occurs at 0◦ or 90◦.

8The “or equal to” aspect applies to so-called degenerate (i.e., “flat”) triangles for which that third vertex lies
between the other two, making “the long way around” the same as the direct route. This note embraces such
degeneracy, while other sources do not; the reader is encouraged to regard neither approach as absolutely (in)correct.
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The comparaties marked “?” reconfirm some previously-described range properties. Those
marked “◦” are clearly visible in the graphs of the trigonometric functions:

5.2. Pythagorean Identities. The most well-known result in all of geometry may be this:

The Theorem of Pythagoras
The sum of the squares of the legs of a right triangle

is equal to the square of the hypotenuse.

opp2 + adj2 = hyp2

Table 4 applies this theorem to the Fundamental Trigonograph’s six triangles. Note that each
identity holds if each element is replaced with its co-element.

? sin-cos sin2 + cos2 = 1

? tan-sec tan2 +1 = sec2

? cot-csc cot2 +1 = csc2

sin-tan sin2 +(sec− cos)2 = tan2

cos-cot cos2 +(csc− sin)2 = cot2

sec-csc sec2 + csc2 = (tan + cot)2

Table 4. Pythagorean identities

The items marked “?” are precisely those involving 1; these three are typically called “the Pythagorean
identities”, and the first of them is the most widely known. The others are interesting curiosities.
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5.3. Internal Proportionality Properties. A family of similar triangles admits the following
proportionality property, called “internal” because each ratio uses components of the same triangle:

The Internal Proportion Theorem
The ratio of lengths in a triangle is equal to the

ratio of corresponding lengths in any similar triangle.

a

b
=
a′

b′
b

c
=
b′

c′
c

a
=
c′

a′

Right triangles with a common angle θ are necessarily similar, and their corresponding sides are
conveniently identified by common descriptors “opp”, “adj”, “hyp”. Therefore, we can interpret
the above thusly:

Each of the following is constant across all right triangles
in the Fundamental Trigonograph:

opp

hyp

adj

hyp

opp

adj

Table 5 applies this rule to our six triangles, logging fully forty-five individual identities (or ninety, if
you count reciprocation). Note that any particular identity remains true if all elements are swapped
with their co-elements.

sin-cos tan-sec cot-csc sin-tan cos-cot sec-csc

opp

hyp

sin

1
=

tan

sec
=

1

csc
=

sec− cos

tan
=

cos

cot
=

sec

tan + cot

adj

hyp

cos

1
=

1

sec
=

cot

csc
=

sin

tan
=

csc− sin

cot
=

csc

tan + cot

opp

adj

sin

cos
=

tan

1
=

1

cot
=

sec− cos

sin
=

cos

csc− sin
=

sec

csc

Table 5. Internal proportionality identities.

5.3.1. Geometric Mean Properties. The geometric mean of numbers m and n is the number g such
that m/g = g/n; that is, mn = g2, so that g =

√
mn.9 The extensive lore of such means is

beyond the scope of the current discussion, but it’s worth mentioning how easily they arise in right
triangles.

9Thus, the geometric mean of two numbers is their product, raised to the power of 1/2. Compare this to the
numbers’ arithmetic mean, which is their sum, multiplied by a factor of 1/2.
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Dropping a perpendicular to the hypotenuse of a right triangle creates three
geometric mean configurations whose components you can trace with your finger.

p

a
=
a

c
→ pc = a2

p

h
=
h

q
→ pq = h2

q

b
=
b

c
→ cq = b2

The reason the geometric means appear is because the added perpendicular sub-divides a right
triangle into similar sub-triangles, whereupon the Internal Proportion Theorem relates the lengths.
Thus, insofar far as this result applies to the Fundamental Trigonograph, we don’t see anything in
Table 6 that we hadn’t seen in Table 5; we’re only seeing some of those things in a new way.

tan-sec cot-csc sec-csc

? cos · sec = 12 sin · csc = 12 tan · cot = 12

cos · (sec− cos) = sin2 sin · (csc− sin) = cos2 tan · (tan + cot) = sec2

(sec− cos) · sec = tan2 (csc− sin) · csc = cot2 cot · (cot + tan) = csc2

Table 6. Geometric mean identities.

The identities marked “?” express key reciprocal relations that can be a little off-putting at first
glance. Why isn’t CO-secant the reciprocal of CO-sine? Why are tangent and CO-tangent recipro-
cals, but not sine and CO-sine (or secant and CO-secant)? It all seems so frustratingly arbitrary.

To ease some of that frustration, simply remember that “co”
means “complementary”; nothing more, nothing less. Complemen-
tary elements are related to ordinary elements by complementary
angles, and one should not expect anything more of them or their
reciprocals. (That co-elements tangent and co-tangent are recip-
rocals is merely a co-incidence.)

Also, keep in mind that the relations are right there in the Fun-
damental Trigonograph. (That’s the whole point of this document!)
If you forget them, just find the appropriate sub-triangles and trace
the appropriate geometric means.

If all that’s too much trouble, then here’s a handy tip:

In the Fundamental Trigonograph,
reciprocal segments are parallel.

sin ‖ csc cos ‖ sec tan ‖ cot

12



5.3.2. “Textbook Definition” Properties. Amid the myriad Internal Proportionality Identities are
these relations:

“Textbook Definitions” of tan, sec, csc, cot

tan

1
=

sin

cos

sec

1
=

1

cos

csc

1
=

1

sin

cot

1
=

1

tan

(
=

cos

sin

)
Some (most? all?) modern trig textbooks treat these as definitions —“tangent is sine-over-cosine”,
“secant is 1-over-cosine”, etc.— only later (if ever) explaining the underlying geometry. Needless
to say, this author prefers the geometric approach.

5.4. External Proportionality Properties. A pair of similar triangles exhibit this proportion-
ality property, called “external” because each ratio involves components from separate triangles:

The External Proportion Theorem
The ratios of the sides a, b, c of a triangle to respective

sides a′, b′, c′ of any similar triangle are equal.

a

a′
=
b

b′
=
c

c′

Therefore:

For any two right triangles in the Fundamental Trigonograph,

opp

opp′
=
adj

adj′
=
hyp

hyp′

All told, the forty-five (or ninety) individual identities shown below in Table 7 duplicate those
derived from the internal proportions in Table 5. Even so, it’s worth seeing those identities in the
context of external proportions.

13



tan-sec sin-tan sec-csc

sin-cos
sin

tan
=

cos

1
=

1

sec

sin

sec− cos
=

cos

sin
=

1

tan

sin

sec
=

cos

csc
=

1

tan + cot

tan-sec · tan

sec− cos
=

1

sin
=

sec

tan

tan

sec
=

1

csc
=

sec

tan + cot

cot-csc · 1

sec− cos
=

cot

sin
=

csc

tan

1

sec
=

cot

csc
=

csc

tan + cot

sin-tan · · sec− cos

sec
=

sin

csc
=

tan

tan + cot

cos-cot · · cos

sec
=

csc− sin

csc
=

cot

tan + cot

cot-csc cos-cot

sin-cos
sin

1
=

cos

cot
=

1

csc

sin

cos
=

cos

csc− sin
=

1

cot
↑

tan-sec
tan

1
=

1

cot
=

sec

csc

tan

cos
=

1

csc− sin
=

sec

cot
↑

cot-csc · 1

cos
=

cot

csc− sin
=

csc

cot
↑

sin-tan · sec− cos

cos
=

sin

csc− sin
=

tan

cot
↑

cos-cot · · ↑

Table 7. External proportionality identities.

5.5. Area Properties. We can derive a few additional identities by observing that the area of a
right triangle can be computed in two ways:

2 · area = a · b = c · d
( leg · leg ) ( hyp · altitude-to-hyp )

Table 8 applies this result to the largest three triangles of the Fundamental Trigonograph. As
always, each identity holds if each element is replaced by its co-element.

leg · leg hyp · alt

tan-sec tan · 1 = sec · sin

cot-csc cot · 1 = csc · cos

sec-csc sec · csc = (tan + cot) · 1

Table 8. Area identities.
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6. Beyond the Right Angle

The Fundamental Trigonograph comprises elements related to an acute angle (or, at its extremes,
the right angle or the zero angle). Even so, we can expand our understanding of the six trig values
to accommodate angles of any size (and either sign!).10

To help motivate this discussion, let’s take a look at a couple of quick trigonometric formulas.
Here’s a quick outline.

• The structure of the Fundamental Trigonograph is built off of an angle’s “reference angle”
in a quadrant.

– Sine is a vertical semi-chord, and cosecant is (part of) a vertical secant line.
– Cosine is a horizontal semi-chord, and cosecant is (part of) a horizontal secant line.
– Tangent and cotangent are (parts of) the line tangent to the endpoint of the radius

segment(with tangent connecting to the secant segment and cotangent connecting to
the cosecant segment).

• The values of the trig functions are signed lengths of the corresponding segments, according
to some seemingly-arbitrary rules (which I’ll justify below).

– Sine and cosecant are positive when these segments fall above the x-axis (Quadrants I
and II), and negative when the segments fall below the x-axis (Quadrants III and IV).

– Cosine and secant are positive when the segments fall to the right of the y-axis (Quad-
rants I and IV), and negative when the segments fall to the left of the y-axis (Quadrants
II and III).

– Tangent and cotangent are positive in Quadrants I and III, and negative in Quadrants
II and IV. A good exercise for students is devise a Quadrant-free counterpart for this
rule. Here’s a decent attempt: Tangent is positive when the segment “points clockwise”
from the point of tangency, and negative when the segment “points counter-clockwise”.
Since cotangent always points in the opposite direction to tangent, but always share’s
tangent’s sign, the rule isn’t so much that “clockwise = positive” and “counterclockwise
= negative”; it’s more that “tangent prefers clockwise” and “cotangent prefers counter-
clockwise” (“co-clockwise”?).

• The sign assignments make secant and tangent “undefined” at angles coterminal with 90◦

and 270◦; they make cosecant and cotangent “undefined” at angles coterminal with 0◦ and
180◦. To see why, consider the Fundamental Trigonographs associated with angles extremely
close to either side of θ = 90. The tangent segment for θ ever-so-slightly-less-than 90◦ is an
extremely large positive number; the closer θ gets to 90◦, the more extreme the largeness,
until θ = 90◦ is expected to give a tangent value of ∞. On the other hand, the tangent
segment for θ ever-so-slightly-more-than 90◦ is an extremely large negative number; the
closer θ gets to 90◦ in that case, the more extreme the largeness, until θ = 90◦ is expected
to give a tangent value of −∞. Because both ∞ and −∞ are equally justifiable, the
expression “tan 90◦” is (in this larger context) ambiguous, making the value “undefined”.

6.1. Explaining the Signs. I don’t normally introduce the Unit Circle as the vehicle for defining
sine and cosine for arbitrary angles. I prefer to build toward a “full circle” (and beyond) view of
Trigonometry by establishing a firm foundation of understanding in Quadrant I alone, focussing
as much as possible on geometric principles. For one thing, this helps keep Geometry from being
“that weird course I took in between Algebra I and Algebra II”. More importantly, it highlights
the general notion of how mathematics (often) advances.

To make that last point, consider this overview of the development of exponents.

10In fact, it’s possible to define the trig values associated with an angle with an imaginary component, or an
“angle” that’s a matrix, or some other fanciful thing. Doing so, however, is beyond the scope of this document.
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• Introduce (strictly-positive, integer) exponents as short-hand for “repeated multiplication”.
• Use intuition (in the form of intuitive counting arguments) to establish relational formulas,

including
xa · xb = xa+b xa/xb = xa−b for a > b

• Leverage such established formulas to give meaning to expressions such as “x0”, “x−6”, and

“x
1
2 ”, which have no inherent meaning in the original context.

• Use intuition (in the form of intuitive “logical arithmetic”) to establish relational formulas,
including

xb = eb·lnx

• Leverage such established formulas to give meaning to such expressions as “3i”, which have
no inherent meaning even in the expanded context.

Our understanding of objects in a reasonably-uncomplicated realm forms the basis of relational
facts, and then those relational facts form the basis of our understanding of object in a slightly-more-
complictated realm; the tail, as they say, wags the dog. And this pattern is repeated throughout
mathematics; witness the advent of complex numbers, fractional (even negative) dimensions and
factorials, Lebesgue integration, and ... the trigonometric functions.

One good reason to stick with Quadrant I is that almost (if not absolutely) every worthwhile
identity has an elegant “picture-proof” to justify it in that context. The bulk of this paper (hope-
fully) shows that the Fundamental Trigonograph serves as the picture for many such proofs. Others
abound. For example, this article

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

gives some picture-proofs (though not my favorite one) of the Angle-Addition Formulas11

sin (A+B) = sinA cosB + cosA sinB cos (A+B) = cosA cosB − sinA sinB

I use these formulas as the springboard for expanding our angular horizons.
If we were at all squeamish about our “degenerate” configurations in the Fundamental Trigono-

graph, for instance, we might reasonably view our presumed values of sin 90◦ and cos 90◦ with some
suspicion. However, by assigning A = 30◦ and B = 60◦, the above formulas confirm those suspect
values using irrefutable trig values for non-degenerate angles A and B; that is, while the left-hand
sides of the formulas might be “iffy”, the right-hand sides are perfectly well-defined for the given
A and B, and the resulting computation should remove any lingering doubt about the true nature
of sin 90◦ and cos 90◦. (Likewise, the Angle-Subtraction Formulas confirm the values of sin 0◦ and
cos 0◦.)

More dramatically, in a context where sin θ and cos θ are lengths of segments in a right triangle
having an angle θ, the expressions “sin 120◦” and “cos 120◦” are laughably non-sensical. But the
Angle-Addition Formula tells us that, if “cos 120◦” is to equal ANYTHING, then it must be equal
to −1

2 (the result of entering A = B = 60◦ into the right-hand side of the formula); likewise the

11Drifting a bit off topic, here’s a “cheer” to help remember the Angle-Addition and -Subtraction Formulas:

Sine! Cosine! Sign! Cosine! Sine!
Cosine, cosine, co-sign, sine, sine!

Sprinkling in As and Bs as necessary, the lines encode the right-hand sides of the formulas for sin (A±B) and
cos (A±B), where we take “sign” to indicate the same sign (plus or minus) as in the combined argument from the
left-hand side, and “co-sign” indicates the opposite sign (minus or plus):

sin (A±B) = sinA cosB ± cosA sinB sign : ± → ±
cos (A±B) = cosA cosB ∓ sinA sinB co− sign : ± → ∓
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expression “sin 120◦” can be given meaning. More generally, however, having come to grips with
the trig values at 90◦, we can extend our understanding throughout all of Quadrant II via these
computations:

sin (A+ 90◦) = sinA cos 90◦ + cosA sin 90◦ = cosA

cos (A+ 90◦) = cosA cos 90◦ − sinA sin 90◦ = − sinA

whose right-hand sides are, once more, are perfectly well-defined for acute (even right) A. And
with an understanding of Quadrants I and II, we can spill into Quadrants III and IV (and be-
yond), arriving in the end with the traditional sign assignments and the any-angle structure of the
Fundamental Trigonograph.

Of course, this Quadrant-by-Quadrant approach is inefficient, and it certainly isn’t worth spend-
ing an inordinate amount of time on. (Some of the concepts can make for thought-provoking
homework exercises.) After establishing the gist of the process, liberal hand-waving is more than
appropriate. The point is to take the opportunity (if only in passing) to present some sense of the
journey12 in the development of Trig, showing it —and Mathematics in general— not as a collection
of pre-fabricated definitions but an ever-lengthening chain of “what if” questions and their answers.

12While certainly outside the scope of a course that introduces Trigonometry to students, it’s worth pointing out
here that the journey continues: the Power Series Properties not only form the bridge to the realm in which “sin i”
and “cos i” have meaning, they also pave the way for Euler’s Formula and the polar representation for complex
numbers and all the mathematics that comes from that.
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