

A TREATISE ON A TRIAD OF TETRADIC TRIANGLE CENTERS

BLUE, THE TRIGONOGRAPHER
blue@trigonography.com

We consider three triangle centers ${ }^{1}$ of a generic, non-degenerate $\triangle A B C$: Orthocenter $E:=X_{4}$ is familiar as the point where the triangle's altitudes concur. Point $D:=X_{74}$, on the circumcircle, is where the parallels at A, B, C to the Euler line, ${ }^{2}$ upon reflection in corresponding angle bisectors of the triangle, concur. Finally, $F:=X_{1138}$ is the unique point for which the Euler lines of $\triangle A B C$, $\triangle F B C, \triangle A F C, \triangle A B F$ are parallel. ${ }^{3}$

Figure 1. Triangle Centers $D=X_{74}, E=X_{4}, F=X_{1138}$
The points' disparate definitions belie a highly unusual commonality:
If P is a specified triangle center of $\triangle A B C$, then vertices A, B, C themselves are the corresponding centers for respective triangles $\triangle P B C, \triangle A P C, \triangle A B P .{ }^{4}$

This aspect of orthocenter E is well-known and age-old, with references dating to Archimedes, ${ }^{5}$ and it is common and significant enough in geometric discourse to have elicited a collective term for the points A, B, C, E : orthocentric system (or quadrangle or quadrilateral or group or set). This note proposes generalizing that term to centric tetrad for points A, B, C, P exhibiting the described property, dubbing P a tetradic center of $\triangle A B C$.

In 2003, Floor van Lamoen [14] observed the tetradic nature of D; in 2021, this author [2] did the same for F, although "Lky" also asserted this a year earlier [15]. ${ }^{6}$

Whether additional tetradic centers exist is an open question. Apart from a limited investigation at the end, this note doesn't address that question directly; rather, it surveys properties

[^0]of D, E, F and relationships among them as a triad, which may-or-may-not provide clues in the search for any tetradic siblings. Before bogging-down in formulas and equations, we'll describe two more commonalities exhibited by our triad members individually, and a key property they exhibit collectively. ${ }^{7}$

Euler and Brocard concurrences. We defined F as the point for which the Euler lines of associated triangles $\triangle F B C, \triangle A F C, \triangle A B F$, and $\triangle A B C$ itself, are parallel; that is, these four lines are concurrent at the Euler line's point-at-infinity, X_{30}. Also, since triad member D lies on the circumcircle of $\triangle A B C$, the Euler lines of its associated triangles concur at the circumcenter. Finally, it's not too difficult to show that the Euler lines of E 's associated triangles concur at X_{5}, the nine-point center of $\triangle A B C$. So, such Euler concurrency is a feature common to all triad members; it is, however, not exclusive to them: the locus of all points P with this property is known to be the union of the circumcircle and the Neuberg circumcubic, about which we'll have more to say in Sections 3 and 5.

Frank and F. V. Morley [8] showed that the Euler lines of a point's associated triangles concur if and only if the Brocard axes of those triangles do. ${ }^{8}$ The points of Brocard concurrency for D, E, F are, respectively, X_{3} (the circumcenter), X_{52} (the orthocenter of the orthic triangle), X_{15786} (helpfully identified by ETC as the intersection of the Brocard axes of the triangulation of X(1138)).

Shadowplay. Recall that the pedal triangle (respectively, cevian triangle) of a non-vertex point P has its vertices where the perpendiculars (respectively, cevians) through P meet the side-lines of $\triangle A B C$. (Figure 2.)

Jean-Pierre Ehrmann [6] proved that E and F are the only instances of P whose pedal and cevian triangles are similar, E's directly (and trivially so!) and F's indirectly. Triad member D gets no consideration here: as with every point on the circumcircle, D 's pedal triangle degenerates to the point's Simson line (which, for D, happens to be perpendicular to the Euler line); since its cevian triangle is non-degenerate, similarity simply isn't in play.

And yet ...
We can say that D 's flat pedal triangle is similar to the shadow of D 's cevian triangle cast in the direction of that triangle's own Euler line. ${ }^{9}$ (Figure 3.) This, along with a slight re-thinking of Ehrmann's result, makes possible a triad-inclusive formulation:

> Triad member P 's cevian triangle, scaled in the direction of its Euler line by an appropriate factor k, is similar to P 's pedal triangle. Cases $P=D, E, F$ correspond to $k=0,1,-1$. Moreover, each of D, E, F is the only non-vertex point with this property for its respective value of k.

[^1]

Figure 2. Pedal Triangles $\triangle A^{\prime} B^{\prime} C^{\prime}$ and Cevian Triangles $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ of E, F, and D
The simpler formulation " P 's cevian and pedal triangles have similar Euler shadows" is also triad-inclusive: for $P=E$ or F, the similar triangles necessarily have similar Euler shadows; for $P=D$, the pedal triangle serves as its own Euler shadow. ${ }^{10}$ However, this property holds for a continuum of points P on a circumscribed degree-13 curve defined by this relation:

$$
\sum_{\text {cyc }} \frac{\left(\triangle_{B}+\triangle_{C}\right)\left(b^{2} \bar{b}^{2}-c^{2} \bar{c}^{2}\right)\left(-a^{2} \bar{a}^{2}+b^{2} \bar{b}^{2}+c^{2} \bar{c}^{2}\right)}{a^{2} \triangle_{B}^{2} \triangle_{C}^{2}-\bar{a}^{2} \triangle_{A}^{2}|\triangle A B C|^{2}}=0 \quad \bar{a}:=|P A|, \triangle_{A}:=|\triangle P B C| \text {, etc }
$$

[^2]

Figure 3. Euler Shadow $\triangle A^{\prime \prime \prime} B^{\prime \prime \prime} C^{\prime \prime \prime}$ of the Cevian Triangle of D
Are D, E, F the only triangle centers on this curve? If not, then might other centers on the curve be tetradic? These questions remain open.

Crosspointillism and Triadic Duality. ETC notes that D is the crosspoint of E and F, and thus that E and F are D-cross-conjugates of each other. ${ }^{11}$ We also have that D is its own D-crossconjugate, a fact that may seem too trivial to mention, but isn't: it's our first encounter with E and F exhibiting a kind of duality for which D exhibits the corresponding self-duality. Indeed, the notion appears often enough in this note to warrant notation for a triad member's "dual point"; we'll use this:

$$
D_{\star}:=D \quad E_{\star}:=F \quad F_{\star}:=E
$$

Thus, we can say that D is the crosspoint of P and P_{\star} for any triad member P; and —writing k_{P} for the "appropriate [scale] factor" described in Shadowplay above - that $k_{P}=-k_{P_{\star}}$. Even so, the reader can expect future invocations of the notion to be a bit more profound.

Randy Hutson characterizes the crosspoint P of points Q and R as the intersection of the tangent lines at Q and R to the circumconic $A B C Q R .{ }^{12}$ This is a keen insight in general, but especially so in the case of the triad, since $A B C E F$ is not just any conic: it is specifically the unique rectangular circumhyperbola with asymptotes parallel and perpendicular to the Euler line. ETC identifies this as the Yiu hyperbola, ${ }^{13}$ and we'll see it throughout this note.

Hutson's insight, then, inspires the triad family portrait that serves as this note's cover image. It also suggests this not-exactly-practical triad construction:

Given $\triangle A B C$, its circumcircle, its Euler line, and its Yiu hyperbola, the line meets the hyperbola at E; the hyperbola's tangent at E meets the circle at D; and the "other" tangent from D meets the hyperbola at F.

[^3]
1. Barycentric Basics

Barycentric $u: v: w$ coordinates of the triad points are as follows: ${ }^{14}$

$$
\begin{aligned}
& D:=\frac{a^{2}}{\left(a^{2}-b^{2}+c^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)-a^{2}\left(-a^{2}+b^{2}+c^{2}\right)}: \cdots: \cdots \\
& E:=\frac{1}{-a^{2}+b^{2}+c^{2}}: \frac{1}{-b^{2}+c^{2}+a^{2}}: \frac{1}{-c^{2}+a^{2}+b^{2}} \\
& F:=\frac{a^{2} b^{2} c^{2}}{\left(-a^{2}+b^{2}+c^{2}-b c\right)^{2}\left(-a^{2}+b^{2}+c^{2}+b c\right)^{2}+9 b^{2} c^{2}\left(c^{2}-a^{2}\right)\left(a^{2}-b^{2}\right)}: \cdots: \cdots
\end{aligned}
$$

Of course, as homogeneous coordinates, these are determined only up to a non-zero multiplied constant. (We could, therefore, divide F 's coordinates through by $a^{2} b^{2} c^{2}$, but we'll leave them as-is so that all coordinates of all triad points have degree -2 as rational functions of a, b, c.) For the sake of specificity, any future reference to a particular coordinate means one of the expressions indicated in (1); this gives us the freedom to write non-homogeneous equations such as these:

$$
\frac{u_{D}+v_{D}+w_{D}}{u_{D} v_{D} w_{D}}=-\frac{\rho^{2} \tau^{2}}{\mu^{2}} \quad \frac{u_{E}+v_{E}+w_{E}}{u_{E} v_{E} w_{E}}=\tau^{2} \quad \frac{u_{F}+v_{F}+w_{F}}{u_{F} v_{F} w_{F}}=-\frac{3 \rho^{4} \tau^{2}}{\mu^{4}}
$$

where

$$
\begin{aligned}
\tau & :=\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}=4|\triangle A B C| \\
\rho & :=\sqrt{-\left(a^{2} \delta_{b} \delta_{c}+b^{2} \delta_{c} \delta_{a}+c^{2} \delta_{a} \delta_{b}\right)} \quad \mu:=a b c \\
\delta_{a} & :=b^{2}-c^{2} \quad \delta_{b}:=c^{2}-a^{2} \quad \delta_{c}:=a^{2}-b^{2} \quad \delta:=\delta_{a} \delta_{b} \delta_{c}
\end{aligned}
$$

The coordinate expressions satisfy a litany of identities, such as these cyclic sums: ${ }^{15}$

$$
\begin{gather*}
\sum_{\text {cyc }} \frac{a^{2}}{u_{D}}=0 \quad \sum_{\text {cyc }} \frac{a^{2}}{u_{E}}=\tau^{2} \quad \sum_{\text {cyc }} \frac{a^{2}}{u_{F}}=-\frac{\rho^{2} \tau^{2}}{\mu^{2}} \tag{2}\\
\sum_{\text {cyc }} \frac{\delta_{a}}{u_{D}}=-\frac{\tau^{2} \delta}{\mu^{2}} \quad \sum_{\text {cyc }} \frac{\delta_{a}}{u_{E}}=0 \quad \sum_{\text {cyc }} \frac{\delta_{a}}{u_{F}}=\frac{6 \tau^{2} \delta}{\mu^{2}} \tag{3}\\
\sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{D}}=-6 \delta \quad \sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{E}}=2 \delta \quad \sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{F}}=18 \delta \tag{4}\\
\sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{D}^{2}}=-\frac{\tau^{4} \delta}{\mu^{2}} \quad \sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{E}^{2}}=\sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{F}^{2}}=0 \tag{5}\\
\sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{E} u_{F}}=\frac{2 \tau^{4} \delta}{\mu^{2}} \quad \sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{D} u_{E}}=\sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{D} u_{F}}=0 \tag{6}\\
\left(\frac{1}{v_{E}^{2}}-\frac{1}{u_{E}^{2}}\right)=\sum_{\text {cyc }} \frac{1}{u_{D} u_{F}}\left(\frac{1}{v_{F}^{2}}-\frac{1}{w_{F}^{2}}\right)=0 \tag{7}
\end{gather*}
$$

[^4]\[

$$
\begin{align*}
& \sum_{\text {cyc }} \frac{a^{2}}{u_{D} u_{E}}\left(\frac{b^{2}}{v_{E}^{2}}-\frac{c^{2}}{w_{E}^{2}}\right)=\sum_{\mathrm{cyc}} \frac{a^{2}}{u_{D} u_{F}}\left(\frac{b^{2}}{v_{F}^{2}}-\frac{c^{2}}{w_{F}^{2}}\right)=0 \tag{8}\\
& \sum_{\text {cyc }} \frac{a^{2}}{u_{D}^{2} u_{E}}\left(\frac{1}{v_{D} w_{E}}-\frac{1}{v_{E} w_{D}}\right)=-\frac{\tau^{6} \delta}{\mu^{2}} \quad \sum_{\text {cyc }} \frac{\delta_{a}}{u_{D} u_{E}}\left(\frac{1}{v_{D} w_{E}}-\frac{1}{v_{E} w_{D}}\right)=-\frac{\tau^{2}}{u_{D} v_{D} w_{D}} \tag{9}\\
& \sum_{\text {cyc }} \frac{a^{2}}{u_{D}^{2} u_{F}}\left(\frac{1}{v_{D} w_{F}}-\frac{1}{v_{F} w_{D}}\right)=\frac{9 \tau^{6} \rho^{4} \delta}{\mu^{6}} \quad \sum_{\text {cyc }} \frac{\delta_{a}}{u_{D} u_{F}}\left(\frac{1}{v_{D} w_{F}}-\frac{1}{v_{F} w_{D}}\right)=\frac{\tau^{2} \rho^{4}}{\mu^{4} u_{D} v_{D} w_{D}} \\
& \sum_{\text {cyc }} \frac{a^{2}}{u_{D} u_{E} u_{F}}\left(\frac{1}{v_{E} w_{F}}-\frac{1}{v_{F} w_{E}}\right)=-\frac{6 \tau^{6} \rho^{2} \delta}{\mu^{4}} \quad \sum_{\text {cyc }} \frac{\delta_{a}}{u_{E} u_{F}}\left(\frac{1}{v_{E} w_{F}}-\frac{1}{v_{F} w_{E}}\right)=\frac{2 \tau^{2} \rho^{2}}{\mu^{2} u_{D} v_{D} w_{D}} \\
& \text { 10) } \sum_{\text {cyc }} \frac{a^{2}}{u_{D} u_{E}^{2}}\left(\frac{1}{v_{D} w_{E}}-\frac{1}{v_{E} w_{D}}\right)=\frac{\tau^{6} \delta}{\mu^{2}} \quad \sum_{\text {cyc }} \frac{a^{2}}{u_{D} u_{E} u_{F}}\left(\frac{1}{v_{D} w_{E}}-\frac{1}{v_{E} w_{D}}\right)=-\frac{3 \tau^{6} \rho^{2} \delta}{\mu^{4}} \tag{10}\\
& \sum_{\text {cyc }} \frac{a^{2}}{u_{D} u_{E} u_{F}}\left(\frac{1}{v_{D} w_{F}}-\frac{1}{v_{F} w_{D}}\right)=-\frac{\tau^{6} \delta}{\mu^{6}} \xi \quad \sum_{\text {cyc }} \frac{a^{2}}{u_{D} u_{F}^{2}}\left(\frac{1}{v_{D} w_{F}}-\frac{1}{v_{F} w_{D}}\right)=\frac{3 \tau^{6} \rho^{2} \delta}{\mu^{8}} \xi \\
& \sum_{\text {cyc }} \frac{a^{2}}{u_{E}^{2} u_{F}}\left(\frac{1}{v_{E} w_{F}}-\frac{1}{v_{F} w_{E}}\right)=\frac{6 \tau^{6} \rho^{2} \delta}{\mu^{4}} \quad \sum_{\text {cyc }} \frac{a^{2}}{u_{E} u_{F}^{2}}\left(\frac{1}{v_{E} w_{F}}-\frac{1}{v_{F} w_{E}}\right)=-\frac{2 \tau^{6} \delta}{\mu^{6}} \xi \\
& \xi:=\left(\mu+\frac{a}{u_{E}}+\frac{b}{v_{E}}+\frac{c}{w_{E}}\right)\left(\mu+\frac{a}{u_{E}}-\frac{b}{v_{E}}-\frac{c}{w_{E}}\right)\left(\mu-\frac{a}{u_{E}}+\frac{b}{v_{E}}-\frac{c}{w_{E}}\right)\left(\mu-\frac{a}{u_{E}}-\frac{b}{v_{E}}+\frac{c}{w_{E}}\right)
\end{align*}
$$
\]

Additional identities include these symmetric relations: ${ }^{16}$

$$
\begin{align*}
\frac{1}{u_{D}}\left(\frac{1}{v_{E} w_{F}}+\frac{1}{v_{F} w_{E}}\right)=\frac{1}{v_{D}}\left(\frac{1}{w_{E} u_{F}}+\frac{1}{w_{F} u_{E}}\right)=\frac{1}{w_{D}}\left(\frac{1}{u_{E} v_{F}}+\frac{1}{u_{F} v_{E}}\right)=\frac{2}{u_{D} v_{D} w_{D}} \tag{11}\\
\frac{u_{D}}{a^{2} \delta_{a}}\left(\frac{1}{v_{E} w_{F}}-\frac{1}{v_{F} w_{E}}\right)=\frac{v_{D}}{b^{2} \delta_{b}}\left(\frac{1}{w_{E} u_{F}}-\frac{1}{w_{F} u_{E}}\right)=\frac{w_{D}}{c^{2} \delta_{c}}\left(\frac{1}{u_{E} v_{F}}-\frac{1}{u_{F} v_{E}}\right)=-\frac{2 \tau^{2}}{\mu^{2}} \tag{12}\\
\frac{u_{E}}{a^{2} \delta_{a}}\left(\frac{1}{v_{D} w_{E}}-\frac{1}{v_{E} w_{D}}\right)=\frac{v_{E}}{b^{2} \delta_{b}}\left(\frac{1}{w_{D} u_{E}}-\frac{1}{w_{E} u_{D}}\right)=\frac{w_{E}}{c^{2} \delta_{c}}\left(\frac{1}{u_{D} v_{E}}-\frac{1}{u_{E} v_{D}}\right)=\frac{\tau^{2}}{\mu^{2}} \tag{13}\\
\frac{u_{F}}{a^{2} \delta_{a}}\left(\frac{1}{v_{D} w_{F}}-\frac{1}{v_{F} w_{D}}\right)=\frac{v_{F}}{b^{2} \delta_{b}}\left(\frac{1}{w_{D} u_{F}}-\frac{1}{w_{F} u_{D}}\right)=\frac{w_{F}}{c^{2} \delta_{c}}\left(\frac{1}{u_{D} v_{F}}-\frac{1}{u_{F} v_{D}}\right)=-\frac{\tau^{2}}{\mu^{2}} \tag{14}\\
a^{2} \delta_{a}\left(\frac{1}{u_{E} u_{F}}-\frac{1}{u_{D}^{2}}\right)=b^{2} \delta_{b}\left(\frac{1}{v_{E} v_{F}}-\frac{1}{v_{D}^{2}}\right)=c^{2} \delta_{c}\left(\frac{1}{w_{E} w_{F}}-\frac{1}{w_{D}^{2}}\right)=\frac{\tau^{4} \delta}{\mu^{2}} \tag{15}
\end{align*}
$$

Many results in this note trace back to these relations.
${ }^{16}$ Relation (11) in proportional form

$$
u_{D}: v_{D}: w_{D} \quad \propto \quad \frac{1}{v_{E} w_{F}}+\frac{1}{v_{F} w_{E}}: \frac{1}{w_{E} u_{F}}+\frac{1}{w_{F} u_{E}}: \frac{1}{u_{E} v_{F}}+\frac{1}{u_{F} v_{E}}
$$

is precisely the barycentric definition of D as the crosspoint of E and F.

2. Geometric Generalities in $\triangle D E F$

The area of $\triangle D E F$ is given by

$$
\frac{|\triangle D E F|}{|\triangle A B C|}=\left|\begin{array}{ccc}
u_{D} & v_{D} & w_{D} \\
u_{E} & v_{E} & w_{E} \\
u_{F} & v_{F} & w_{F}
\end{array}\right|=\frac{4 \tau^{6}}{a^{4} b^{4} c^{4}}\left|\delta_{a} \delta_{b} \delta_{c} u_{E} v_{E} w_{E} u_{F} v_{F} w_{F}\right|
$$

The barycentric equations of the side-lines are ${ }^{17}$

$$
\overleftrightarrow{E F}: \sum_{c y c} \frac{a^{2} \delta_{a}}{u_{D} u_{E} u_{F}} u=0 \quad \overleftrightarrow{D E}: \sum_{c y c} \frac{a^{2} \delta_{a}}{u_{D} u_{E}^{2}} u=0 \quad \overleftrightarrow{D F}: \sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{D} u_{F}^{2}} u=0
$$

We can exploit the triad's notion of duality by expressing all three equations in the common form

$$
\overleftrightarrow{P Q}: \sum_{c y c} \frac{a^{2} \delta_{a}}{u_{P} u_{Q} u_{R_{\star}}} u=0 \quad\{P, Q, R\}=\{D, E, F\}
$$

The lengths of the sides of $\triangle D E F$ are given by

$$
|E F|^{2}=\frac{2 a^{4} b^{4} c^{4}}{9 \tau^{2} \rho^{8}} \sum_{\mathrm{cyc}} \frac{a^{4} \delta_{a}^{2}}{u_{D}^{2} u_{E} u_{F}^{2}} \quad 9|E F|^{2}-4|D E|^{2}=8 \frac{\tau^{4} \delta_{a}^{2} \delta_{b}^{2} \delta_{c}^{2}}{\rho^{6}}=4|F D|^{2}-|E F|^{2}
$$

From this, we can deduce that $5|E F|^{2}=2|F D|^{2}+2|D E|^{2}$ and thus that, by Apollonius' Theorem, the D-median has length $|E F|$. Some follow-on consequences appear below, where M is the midpoint of $D E, N$ is the midpoint of $D M$ (and lies on the Euler line), and O_{D} and O_{F} (which we'll encounter again in Section 4) are the respective midpoints of $M N$ and $D E$; also, references to the Euler line and circumcircle indicate those elements of host triangle $\triangle A B C$. (Figure 4.)

Figure 4. Geometry of $\triangle D E F$, showing the circumcircle and Euler line of $\triangle A B C$

[^5]- The E - and F-cevians through N (the former being the Euler line itself) are perpendicular, and they trisect edges $D F$ and $E F$.
- N quadrisects those cevians, and

$$
|E N|=\frac{a^{2} b^{2} c^{2}}{3 \rho^{3} \tau\left|u_{D} v_{D} w_{D}\right|} \quad|F N|=\frac{\tau^{2}}{\rho^{3}}\left|\delta_{a} \delta_{b} \delta_{c}\right|
$$

- Writing $\theta_{P Q}$ for the (signed) acute angle made by side-line $P Q$ and the Euler line, we have ${ }^{18}$

$$
\begin{equation*}
\tan \theta_{D E}: \tan \theta_{E F}: \tan \theta_{F D} \propto 1:-3: 9 \tag{16}
\end{equation*}
$$

In particular, for an appropriate orientation,

$$
\tan \theta_{D E}=\tau^{3} \frac{\delta_{a} \delta_{b} \delta_{c} u_{D} v_{D} w_{D}}{a^{2} b^{2} c^{2}}
$$

- O_{D} and O_{F} are mutual reflections in the Euler line, and

$$
\left|O_{D} O_{F}\right|=\frac{1}{2}|F N|
$$

This is also the distance from D to the Euler line.

- The reflection of E in O_{D} (point D^{\prime} in the figure) is the reflection of D in the Euler line; hence it lies on the circumcircle. (It is in fact the fourth intersection of the circumcircle with the circumhyperbola $A B C E F$; the point is Kimberling's X_{477}.)

We can glean from these facts a concrete construction of the triad: First, construct $D^{\prime}:=X_{477} \cdot{ }^{19}$ Then D is the reflection of D^{\prime} in the Euler line. Point F 's distance from the Euler line is $\left|D D^{\prime}\right|$, and its distance from line $D D^{\prime}$ is one-third E 's distance to that line. (Figure 5.)

Figure 5. A construction of the triad

[^6]
3. Conjugate Considerations

Let P^{+}and P^{-}denote the isogonal and isotomic conjugates ${ }^{20}$ of a point P. The conjugates of D, E, F, and half of the conjugates of those conjugates, are documented triangle centers:

$$
\begin{array}{lllll}
D^{+}:=X_{30} & \text { (Euler infinity point) } & D^{-}:=X_{3260} & \left(D^{+}\right)^{-}:=X_{1494} & \left(D^{-}\right)^{+}:=- \\
E^{+}:=X_{3} & \text { (circumcenter) } & E^{-}:=X_{69} & \left(E^{+}\right)^{-}:=X_{264} & \left(E^{-}\right)^{+}:=X_{25} \\
F^{+}:=X_{399} & \text { (Parry reflection point) } & F^{-}:=X_{1272} & \left(F^{+}\right)^{-}:=- & \left(F^{-}\right)^{+}:=-
\end{array}
$$

Correspondingly, we use \pm superscripts on individual barycentric coordinates of such conjugates: ${ }^{21}$

$$
P^{+}=u^{+}: v^{+}: w^{+}:=\frac{a^{2}}{u}: \frac{b^{2}}{v}: \frac{c^{2}}{w} \quad P^{-}=u^{-}: v^{-}: w^{-}:=\frac{1}{u}: \frac{1}{v}: \frac{1}{w}
$$

As with the coordinates of D, E, F themselves, we ignore homogeneity in defining $u_{P}^{ \pm}, v_{P}^{ \pm}, w_{P}^{ \pm}$in terms of the specific expressions u_{P}, v_{P}, w_{P}, allowing us to write non-homogeneous equations such as these "flattened" forms of (2) and (3):

$$
\begin{aligned}
& u_{D}^{+}+v_{D}^{+}+w_{D}^{+}=0 \quad u_{E}^{+}+v_{E}^{+}+w_{E}^{+}=\tau \quad u_{F}^{+}+v_{F}^{+}+w_{F}^{+}=-\frac{\rho^{2} \tau^{2}}{\mu^{2}} \\
& \delta_{a} u_{D}^{-}+\delta_{b} v_{D}^{-}+\delta_{c} w_{D}^{-}=-\frac{\tau^{2} \delta}{\mu^{2}} \quad \delta_{a} u_{E}^{-}+\delta_{b} v_{E}^{-}+\delta_{c} w_{E}^{-}=0 \quad \delta_{a} u_{F}^{-}+\delta_{b} v_{F}^{-}+\delta_{c} w_{F}^{-}=\frac{6 \tau^{2} \delta}{\mu^{2}}
\end{aligned}
$$

Concurrences. Triad points and their isoconjugates determine numerous concurrent lines.

- Lines $D D^{-}, E E^{-}, F F^{-}$(ie, the three lines of the form $P P^{-}$for triad point P) concur at D^{-}. (Figure 6.) This property follows from (7), and it places our triad (and their isotomic conjugates) on the circumcubic K_{-}described in Section 5.
Line $E E^{-}$also contains $\left(E^{+}\right)^{-}$, and $F F^{-}$also contains $\left(F^{+}\right)^{-}$.
- Lines $D D^{+}, E E^{+}, F F^{+}$(ie, the three lines $P P^{+}$) concur at D^{+}, which is to say: they are parallel to the Euler line; of course, $E E^{+}$is the Euler line. (Figure 6.) This follows from (8), and it places the triad (and their isogonal conjugates) on the circumcubic K_{+}. (Section 5.)
Line $E E^{+}$also contains $\left(E^{-}\right)^{+}$, and $F F^{+}$also contains $\left(F^{-}\right)^{+}$.
- Lines $D^{+} D^{+}, D^{-} D^{-}, E^{+} F^{+}, E^{-} F^{-}\left(\right.$ie,$\left.P^{ \pm} P_{\star}^{ \pm}\right)$concur at D. (Figure 7.) Here, we interpret $D^{+} D^{+}$and $D^{-} D^{-}$as tangent lines to the circumcubics K_{+}and K_{-}. (Tangent line $D^{+} D^{+}$is the asymptote of K_{+}.)
$E^{+} F^{+}$also contains $\left(D^{-}\right)^{+}$, and $E^{-} F^{-}$also contains $\left(D^{+}\right)^{-}$.
- Lines $D^{+} D^{-}, E^{+} F^{-}, F^{+} E^{-}\left(\right.$ie, $\left.P^{ \pm} P_{\star}^{\mp}\right)$ concur at a point not currently indexed in $E T C$; we'll call it Z. (Figure 8, left.) It has barycentric coordinates

$$
\delta_{b} v_{D}\left(u_{E}^{-} v_{F}^{+}-v_{E}^{-} u_{F}^{+}\right)-\delta_{c} w_{D}\left(w_{E}^{-} u_{F}^{+}-u_{E}^{-} w_{F}^{+}\right): \cdots: \cdots
$$

Line $\left(D^{+}\right)^{-}\left(D^{-}\right)^{+}$also contains Z.

[^7]

Figure 6

Figure 7

- Circles $\bigcirc E E^{+} E^{-}$and $\bigcirc F F^{+} F^{-}$(but not $\bigcirc D D^{+} D^{-}$) meet the triangle's circumcircle at the Steiner Point, $S:=X_{99}$. (Figure 8, right.) The locus of all P-including the centroid, incenter, and excenters - such that $\bigcirc P P^{+} P^{-}$contains S is the Stammler circumquartic (Gibert's Q_{6}): ${ }^{22}$

$$
\frac{a^{2} \delta_{a}}{u^{2}}+\frac{b^{2} \delta_{b}}{v^{2}}+\frac{c^{2} \delta_{c}}{w^{2}}=0
$$

Line $D E^{-} F^{-}$also contains S.

[^8]

Figure 8
Arbitrary Isoconjugation. Kimberling ${ }^{23}$ generalizes isogonal and isotomic conjugation via the notion of isoconjugation with respect to a given triangle center Q. The operation takes point P to a point we'll denote P°, defined by ${ }^{24}$

$$
P^{\circ}=u_{P}^{\circ}: v_{P}^{\circ}: w_{P}^{\circ}:=\frac{a^{3}}{u_{P} u_{Q}}: \frac{b^{3}}{v_{P} v_{Q}}: \frac{c^{3}}{w_{P} w_{Q}}
$$

Thus, P^{+}and P^{-}are isoconjugates of P with respect to $X_{1}=a: b: c$ (the incenter) and $X_{31}=a^{3}: b^{3}: c^{3}$. One can show that, lines $D D^{\circ}, E E^{\circ}, F F^{\circ}$ concur if and only if Q lies on the line ${ }^{25} X_{1} X_{31}$, which has equation

$$
\begin{equation*}
\frac{u \delta_{a}}{a}+\frac{v \delta_{b}}{b}+\frac{w \delta_{c}}{c}=0 \tag{17}
\end{equation*}
$$

For such Q, we can say further

- Lines $D D^{\circ}, E E^{\circ}, F F^{\circ}$ (that is, lines $P P^{\circ}$) concur at D°. This places the triad on the circumcubic K 。 described in Section 5.
- Lines $D^{\circ} D^{\circ}$ and $E^{\circ} F^{\circ}$ (lines $P^{\circ} P_{\star}^{\circ}$) meet at D. Here, $D^{\circ} D^{\circ}$ is the tangent at D° to K_{\circ} above.
- If P^{\times}is the isoconjugate of P relative to some other point R on line $X_{1} X_{31}$, then $D^{\circ} D^{\times}$, $E^{\circ} F^{\times}, E^{\times} F^{\circ}$ (lines $P^{\circ} P_{\star}^{\times}$) concur at a point with barycentric coordinates

$$
\frac{a^{3}}{u_{E}^{2} u_{F}^{2} u_{Q}^{2} u_{R}^{2}}\binom{u_{E} u_{F}\left(v_{E}^{-} w_{F}^{-}-w_{E}^{-} v_{F}^{-}\right)\left(u_{Q}^{2} v_{Q}^{-} w_{Q}^{-}-u_{R}^{2} v_{R}^{-} w_{R}^{-}\right)}{-u_{Q} u_{R}\left(v_{Q}^{-} w_{R}^{-}-w_{Q}^{-} v_{R}^{-}\right)\left(u_{E}^{2} v_{E}^{-} w_{E}^{-}-u_{F}^{2} v_{F}^{-} w_{F}^{-}\right)}: \cdots: \cdots
$$

Line $\left(D^{\circ}\right)^{\times}\left(D^{\times}\right)^{\circ}$ also contains this point.

- In general, $\bigcirc E E^{\circ} E^{\times}$and $\bigcirc F F^{\circ} F^{\times}$do not concur with $\bigcirc A B C$.
- As Q varies along $X_{1} X_{31}$, the loci of $D^{\circ}, E^{\circ}, F^{\circ}$ are the circumconics $A B C E F$ (the Yiu hyperbola), $A B C D E, A B C D F$. (In the notation of the next section, P° lies on conic $\Gamma_{P_{\star}}$.)

[^9]
4. Circumconic Circumstances

We'll begin with some facts about families of circumconics of $\triangle A B C$ that pass through one of our triad members.

- Any circumconic through E is a rectangular hyperbola; conversely, any rectangular circumhyperbola contains E.
- The center of a circum-hyperbola through E lies on the nine-point circle; specifically, it is the midpoint of E and the hyperbola's fourth intersection with the circumcircle of $\triangle A B C$.
- The circumconics through D (as with any fixed point on the circumcircle) have parallel axes of symmetry. If θ is an angle formed by the major/transverse axis and the Euler line, then

$$
\cos 2 \theta=\frac{\tau^{3} \delta_{a} \delta_{b} \delta_{c}}{2 \rho^{3} a b c}
$$

- The center of a circumconic through D lies on the necessarily-rectangular hyperbola through the circumcenter, the midpoints of the sides, and the midpoint of $D E .{ }^{26}$
- For circumconics through F, neither eccentricity nor axis direction are constant, but we have

$$
(1-2 \cos 2 \theta) \cdot \text { eccentricity }^{2}=2
$$

where θ is an angle made by the major/transverse axis and the Euler line.

Now, let's consider three specific circumconics: Define Γ_{P}, for triad member P, to be the circumconic through the other two triad members (Figure 9); the conic's barycentric equation, using our duality notation, is:

$$
\Gamma_{P}: \sum_{c y c} \frac{a^{2} \delta_{a}}{u u_{P_{\star}}}=0
$$

Combining properties from above:

- Γ_{D} - earlier dubbed the Yiu hyperbola and featured in the triad family portrait (Figure ??)is a rectangular hyperbola whose transverse axis makes a 45° angle with the Euler line; thus, its asymptotes are parallel and perpendicular to that line.
- Γ_{F}-known in the literature as the Jerabek hyperbola - is a rectangular hyperbola with axes of symmetry parallel to those of Γ_{E}.

Bonus fact about Γ_{D} :

- If P is a point on Γ_{D}, and $A^{\prime}, B^{\prime}, C^{\prime}$ are reflections of P in the respective lines parallel to the Euler line through A, B, C, then lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ concur at another point of Γ_{D}; namely, the reflection of P in the conic's center.
When $P=E$, the point of concurrence X_{477}, the fourth point where the Γ_{D} meets the circumcircle. When $P=F$, this point is X_{5627}, which ETC identifies as the Yiu Reflection Point (which inspired the name Yiu hyperbola for Γ_{D}.) In either case, the tangent to Γ_{D} at P is parallel to the line $D P_{\star}$.

[^10]

Figure 9. Circumconics $\Gamma_{D}:=A B C E F, \Gamma_{E}:=A B C F D, \Gamma_{F}:=A B C D E$
Let O_{P} be the center of Γ_{P}. Some properties of O_{D} and O_{F} appear in Section 2.

- $O_{F}\left(X_{125}\right)$ is the midpoint of $D E$. Its barycentric coordinates are:

$$
\frac{\delta_{a}^{2}}{u_{E}}: \frac{\delta_{b}^{2}}{v_{E}}: \frac{\delta_{c}^{2}}{w_{E}}
$$

- $O_{D}\left(X_{3258}\right)$ is the reflection of O_{F} in the Euler line.

$$
\frac{\delta_{a}}{u_{D}}\left(\frac{1}{v_{F}}-\frac{1}{w_{F}}\right): \frac{\delta_{b}}{v_{D}}\left(\frac{1}{w_{F}}-\frac{1}{u_{F}}\right): \frac{\delta_{c}}{w_{D}}\left(\frac{1}{u_{F}}-\frac{1}{v_{F}}\right)
$$

- O_{E} is not (yet!) in ETC.

$$
\frac{1}{u_{F}}\left(\frac{1}{v_{F}}-\frac{1}{w_{F}}\right)^{2}: \frac{1}{v_{F}}\left(\frac{1}{w_{F}}-\frac{1}{u_{F}}\right)^{2}: \frac{1}{w_{F}}\left(\frac{1}{u_{F}}-\frac{1}{v_{F}}\right)^{2}
$$

Abusing notation to indicate component-wise arithmetic on the conic centers' coordinates, we have

$$
\frac{O_{D}^{2}}{O_{E} \cdot O_{F}}=\frac{u_{E} u_{F}}{u_{D}^{2}}: \frac{v_{E} v_{F}}{v_{D}^{2}}: \frac{w_{E} w_{F}}{w_{D}^{2}} \quad\left(=\frac{u_{E} u_{E_{\star}}}{u_{D} u_{D_{\star}}}: \frac{v_{E} v_{E_{\star}}}{v_{D} v_{D_{\star}}}: \frac{w_{E} w_{E_{\star}}}{w_{D} w_{D_{\star}}}\right)
$$

Finally, recall that the isotomic (or isogonal) conjugate of a line is a circumconic, and conversely. Therefore, having previously observed (Section 3) that lines $E^{-} F^{-}, D^{-} F^{-}, D^{-} E^{-}$contain D, F, E, respectively, we know that $\Gamma_{D}, \Gamma_{E}, \Gamma_{F}$ contain D^{-}, F^{-}, E^{-}; likewise, previous observations imply that they contain D^{+}, F^{+}, E^{+}. Succinctly,

$$
\Gamma_{P} \text { contains } P_{\star}^{-} \text {and } P_{\star}^{+} .
$$

Some consequences of this fact are explored in Section 5.

Three more conics. For P a member of the triad, define Φ_{P} as the circumconic through P whose tangent line at P is perpendicular to the Euler line. Equations are as follows:

$$
\Phi_{D}: \sum_{\text {cyc }} \frac{a^{2} u_{D}}{u_{F} u}\left(\delta_{b} \delta_{c} \tau^{2} u_{F}-a^{2} b^{2} c^{2}\right)=0 \quad \Phi_{P}: \sum_{\text {cyc }} \frac{a^{2} u_{P}}{u_{D} u}=0 \quad(\text { for } P=E, F)
$$

Simplicity clearly disfavors D (as does Figure 10), and we can say more about the other cases: Φ_{P} and line $D P$ meet the circumcircle at a point M_{P} given by ${ }^{27}$

$$
M_{P}:=\frac{u_{P}^{2}}{\delta_{a}}: \frac{v_{P}^{2}}{\delta_{b}}: \frac{w_{P}^{2}}{\delta_{c}} \quad(\text { for } P=E, F) \quad M_{E}=X_{107}
$$

A bit more about Φ_{E} and Φ_{F} is said (and shown) in Section 5's discussion of circumcubic K_{\varnothing}.

Figure 10. Circumconics Φ_{E} and Φ_{F}

5. Circumcubic Curiosities

Circumcubics K_{+}and K_{-}. Bernard Gibert's catalogue of cubics [9] opens with the isogonally-self-conjugate Neuberg cubic, ${ }^{28} K_{1}$, herein denoted K_{+}. The isotomically-self-conjugate K_{279} is denoted K_{-}. The equations are as follows:

$$
K_{+}: \sum_{\text {cyc }} \frac{u}{u_{D}}\left(\frac{v^{2}}{b^{2}}-\frac{w^{2}}{c^{2}}\right)=0 \quad K_{-}: \sum_{\text {cyc }} \frac{u}{u_{D}}\left(v^{2}-w^{2}\right)=0 \quad K_{ \pm}: \sum_{\text {cyc }} \frac{u}{u_{D}}\left(\frac{v}{v^{ \pm}}-\frac{w}{w^{ \pm}}\right)=0
$$

The curves are the loci of a point P such that line $P P^{+}$- respectively, $P P^{-}$- contains D. As noted in Section 3, and depicted in Figures 6 and 7, each contains the triad (and the appropriate conjugates thereof).

[^11]- Barring degeneracies in the triangle, D, E, F are the only (non-vertex) points on K_{-}such that the K_{-}for each of $\triangle P B C, \triangle A P C, \triangle A B P$ is also a circumcubic of $\triangle A B C .{ }^{29}$ Thus, this property characterizes our triad.
- Every (non-vertex) point P on K_{+}is such that the K_{+}of each of $\triangle P B C, \triangle A P C, \triangle A B P$ is also a circumcubic of $\triangle A B C$; so, this property does not characterize the triad. ${ }^{30}$

Circumcubic K_{\circ}. As of this writing, Gibert's catalogue documents only K_{+}and K_{-}as irreducible circumcubics containing the triad. However, invoking Section 3's "arbitrary isoconjugation" yields a continuum of such cubics that also pass through associated isoconjugates $D^{\circ}, E^{\circ}, F^{\circ}$. The equation, for isoconjugation with respect to Q on $X_{1} X_{31}$, is given by

$$
\begin{equation*}
K_{\circ}: \sum_{\mathrm{cyc}} \frac{u}{u_{D}}\left(\frac{v^{2} v_{Q}}{b^{3}}-\frac{w^{2} w_{Q}}{c^{3}}\right)=0 \tag{18}
\end{equation*}
$$

Since the D° for each Q necessarily lies on the Yiu hyperbola, Γ_{D}, we can simplify the definition of K_{\circ} by taking D° on that hyperbola and defining E° and F° via $u_{D} u_{D}^{\circ}=u_{E} u_{E}^{\circ}=u_{F} u_{F}^{\circ}$, etc. With this approach, we can write the equation in a form directly comparable to the those given above for K_{+}and K_{-}.

$$
K_{\circ}: \sum_{\mathrm{cyc}} \frac{u}{u_{D}}\left(\frac{v^{2}}{v_{D} v_{D}^{\circ}}-\frac{w^{2}}{w_{D} w_{D}^{\circ}}\right)
$$

Cubic K_{\circ} exhibits various features of K_{-}and K_{+}. In addition to those mentioned in Section 3, and the decomposition described below, we note that the tangents at A, B, C concur at D. Also, the tangent at D and the line $E F$ concur with the tangents at the non-vertex points of intersection with the triangle's side-lines at another point on the cubic: namely, the D°-Ceva-conjugate ${ }^{31}$ of D.

A trio of degenerate cases, one for each vertex, are worth mentioning. For vertex A (likewise, B and C), we take D° as the other point where line $A D$ meets the Yiu hyperbola. Then K_{\circ} reduces to the union of $A D$ and the (non-circum)conic $B C E E^{\circ} F F^{\circ}$. (Figure 11.) Their equations are as follows:

$$
\begin{array}{ll}
K_{\circ}\left(D^{\circ} \in A D\right): & \left(\frac{v}{v_{D}}-\frac{w}{w_{D}}\right)\left(\frac{u^{2}}{u_{E} u_{F}}+\frac{v w}{v_{D} w_{D}}-\frac{w u}{w_{D} u_{D}}-\frac{u v}{u_{D} v_{D}}\right)=0 \\
K_{\circ}\left(D^{\circ} \in B D\right): & \left(\frac{w}{w_{D}}-\frac{u}{u_{D}}\right)\left(\frac{v^{2}}{v_{E} v_{F}}-\frac{v w}{v_{D} w_{D}}+\frac{w u}{w_{D} u_{D}}-\frac{u v}{u_{D} v_{D}}\right)=0 \\
K_{\circ}\left(D^{\circ} \in C D\right): & \left(\frac{u}{u_{D}}-\frac{v}{v_{D}}\right)\left(\frac{w^{2}}{w_{E} w_{F}}-\frac{v w}{v_{D} w_{D}}-\frac{w u}{w_{D} u_{D}}+\frac{u v}{u_{D} v_{D}}\right)=0
\end{array}
$$

[^12]Observe that the conic component of each equation has no explicit reference to conjugate elements. We can in fact describe the conic as the one passing through, for instance, $B C E F$ and having tangents at B and C concur at D; it happens to also include E° and F°.

Figure 11. Circumcubic K_{\circ} for $D^{\circ} \in A D$, the union of line $A D$ and conic $B C E E^{\circ} F F^{\circ}$
Circumcubics $\Omega_{-P}, \Omega_{+P}, \Omega_{\mathrm{oP}}$. Circumconic Γ_{D} contains D^{-}, E, F; its isotomic conjugate line Γ_{D}^{-}contains D, E^{-}, F^{-}. Therefore, the union of these sets is a (reducible) circumcubic containing the triad points and their isotomic conjugates. This is, of course, true for each triad member. We can express the unions, and their equations, thusly:

$$
\Omega_{-P}:=\Gamma_{P} \cup \Gamma_{P_{\star}}^{-} \quad \rightarrow \quad \sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{P_{\star}}} v w \cdot \sum_{\mathrm{cyc}} \frac{a^{2} \delta_{a}}{u_{P}} u=0
$$

As a result, all three circumcubics belong to a pencil on the nine points A, B, C, D, E, F, D^{-}, E^{-}, F^{-}. This pencil also contains K_{-}. Any member of such a pencil is expressible as a linear combination of any pair of members. ${ }^{32}$ The triad cubics, and K_{-}, admit particularly-nice decompositions:

$$
\Omega_{-D} \propto \Omega_{-E}+\Omega_{-F} \quad K_{-} \propto \Omega_{-E}-\Omega_{-F}
$$

As one might expect, an identical analysis goes through for cubics cobbled-together from our circumconics and their isogonal conjugate lines.

$$
\Omega_{+P}:=\Gamma_{P} \cup \Gamma_{P_{\star}}^{+} \quad \rightarrow \quad \sum_{\mathrm{cyc}} \frac{a^{2} \delta_{a}}{u_{P_{\star}}} v w \cdot \sum_{\mathrm{cyc}} \frac{\delta_{a}}{u_{P}} u=0
$$

The pencil on $A, B, C, D, E, F, D^{+}, E^{+}, F^{+}$contains $\Omega_{+D}, \Omega_{+E}, \Omega_{+F}$, and K_{+}, and we have

$$
\Omega_{+D} \propto \Omega_{+E}+\Omega_{+F} \quad K_{+} \propto \Omega_{+E}-\Omega_{+F}
$$

And, generally, for isoconjugation P° with respect to Q on line $X_{1} X_{31}$, we can define

$$
\Omega_{\circ P}:=\Gamma_{P} \cup \Gamma_{P_{\star}}^{\circ} \quad \rightarrow \quad \sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{P_{\star}}} v w \cdot \sum_{\text {cyc }} \frac{a^{2} \delta_{a}}{u_{P} u_{D} u_{D}^{\circ}} u=0
$$

[^13]which gives rise to corresponding decompositions
$$
\Omega_{\circ D} \propto \Omega_{\circ E}+\Omega_{\circ F} \quad K_{\circ} \propto \Omega_{\circ E}-\Omega_{\circ F}
$$

Circumcubic K_{\varnothing}. A final example of a (reducible) circumcubic through the triad members is obvious but not-quite-trivial: define K_{\varnothing} as the union of line $E F$ and the circumcircle of $\triangle A B C$.

$$
K_{\varnothing}: \sum_{\text {сус }} \frac{a^{2} \delta_{a}}{u_{D} u_{E} u_{F}} u \cdot \sum_{\text {сус }} \frac{a^{2}}{u}=0
$$

Tangents to the curve at A, B, C do not concur, so K_{\varnothing} is not an instance of K_{0}. ${ }^{33}$ Nevertheless, the cubic is self-isoconjugate, here with respect to Q (not on line $X_{1} X_{31}$ nor in ETC) given by:

$$
Q:=\frac{a^{3} \delta_{a}}{u_{D} u_{E} u_{F}}: \frac{b^{3} \delta_{b}}{v_{D} v_{E} v_{F}}: \frac{c^{3} \delta_{c}}{w_{D} w_{E} w_{F}}
$$

In particular, the cubic contains the Q-isoconjugates of the triad:

$$
D^{\varnothing}:=\frac{u_{E} u_{F}}{\delta_{a}}: \cdots: \cdots \quad E^{\varnothing}:=\frac{u_{F} u_{D}}{\delta_{a}}: \cdots: \cdots \quad F^{\varnothing}:=\frac{u_{D} u_{E}}{\delta_{a}}: \cdots: \cdots=X_{1304}
$$

Some facts about these points:

- Point D^{\varnothing} lies on the line $E F$. It is the non-vertex point common to circumcubics Φ_{E} and Φ_{F} introduced (along with points M_{E} and M_{F}) at the end of Section 4. For $P=D$ or E, tangents to Φ_{P} at D^{\varnothing} and M_{P} meet at P_{\star}^{\varnothing}. (Figure 12.)

Figure 12. Circumconics Φ_{E} and Φ_{F} again

- E^{\varnothing} and F^{\varnothing} lie on the circumcircle, and their constructions via concurrent lines are explained under "Reflections and perspectors" in Section 7.
- Lines $E F^{\varnothing}$ and $F E^{\varnothing}$ meet at X_{477}, the reflection of D in the Euler line (also, the fourth point where the Yiu hyperbola, Γ_{D}, meets the circumcircle). The tangent to K_{\varnothing} at D meets $E F$ at the X_{477}-Ceva-conjugate of D.

[^14]- Line $D E^{\varnothing}$ is tangent at D to circumconics Γ_{E}, and (by footnote 12) it contains the point where $E F$ meets Γ_{F}. Likewise, $D F^{\varnothing}$ is tangent to Γ_{F} and contains the point where $E F$ meets Γ_{E}. (Figure 13, left.) The meeting points (neither of which is in ETC) have these coordinates

$$
E F \cap \Gamma_{F}=\frac{u_{D} u_{F}}{u_{E}}: \cdots: \cdots=\frac{D F}{E} \quad E F \cap \Gamma_{E}=\frac{u_{D} u_{E}}{u_{F}}: \cdots: \cdots=\frac{D E}{F}
$$

- Circles $\bigcirc D^{\varnothing} E F$ (that is, line $E F$), $\bigcirc D E^{\varnothing} F, \bigcirc D E F^{\varnothing}$ concur at a point X_{2132}, the D^{+}-Ceva-conjugate of D; correspondingly, $\bigcirc D E^{\varnothing} F^{\varnothing}$ (the circumcircle), $\bigcirc D^{\varnothing} E F^{\varnothing}, \bigcirc D^{\varnothing} E^{\varnothing} F$ concur at the Q-isoconjugate of X_{2132}. (Figure 13, right.)

Figure 13. Circumcubic K_{\varnothing}, the union of the circumcircle and line $E F$

6. Complex Combinations

Consider our $\triangle A B C$ embedded in the complex plane, and let P_{n} be the offset $P-X_{n}$ for triangle center X_{n}. We observe the following elementary symmetric offset relations:

$$
\begin{array}{rl}
A_{n}+B_{n}+C_{n}+D_{n}=0 & n=6699 \\
A_{n}+B_{n}+C_{n}+E_{n}=0 & n=5 \\
A_{n}+B_{n}+C_{n}+F_{n}=0 & n=45694 \\
A_{n} B_{n}+A_{n} C_{n}+A_{n} D_{n}+B_{n} C_{n}+B_{n} D_{n}+C_{n} D_{n}=0 & n \in\{3,125\} \\
A_{n} B_{n} C_{n}+A_{n} B_{n} F_{n}+A_{n} C_{n} F_{n}+B_{n} C_{n} F_{n}=0 & n \in\{1511, \bullet, \bullet\}
\end{array}
$$

The three linear relations effectively define $G_{D}:=X_{6699}, G_{E}:=X_{5}$ (the nine-point center), and $G_{F}:=X_{45694}$, such that each G_{P} is the vertex centroid of $A B C P$; geometrically, G_{P} is the dilation of P in $\triangle A B C$'s centroid $G:=X_{2}$ by scale factor 1/4. (Figure 14.) Each such G_{P} is a shared triangle center for triangles $\triangle A B C, \triangle P B C, \triangle A P C, \triangle A B P$.

The quadratic relation highlights the fact that the four triangles defined by $P=D$ actually share a common circumcircle and Jerabek hyperbola (referred to as Γ_{F} earlier in this note), hence

Figure 14
have a common circumcenter X_{3} and hyperbola center $O_{F}=X_{125}$. The midpoint of these shared points is G_{D}. That the shared points lead to the uncomplicated offset relation seems non-obvious.

The cubic relation identifies X_{1511} (known as the Fermat crosssum; also, the midpoint of $D F^{+}$, the dilation of O_{D} in G_{F} by scale factor -2 , and the dilation of D in circumcenter X_{3} by scale factor $-1 / 2$) as a triangle center common to the triangles defined by $P=F$. Two other triangle centers (not indexed in ETC) satisfy the cubic offset relation, but their barycentric representations are a bit ugly; these centers are mutual reflections in O_{D}, so that the triangle they form with X_{1511} has centroid G_{F}.

Solving the counterpart quadratic and cubic offset relations involving other triad members yields (non-indexed) triangle centers with complicated coordinates. On the other hand, it's perhaps worth noting that the triangles defined by $P=F$ share rectangular hyperbola Γ_{D} through $A B C F$, and therefore center $O_{D}=X_{3258}$; this point gives the non-elementary cubic offset relation

$$
\begin{aligned}
& 3\left(A_{n}+B_{n}+C_{n}+F_{n}\right)\left(A_{n} B_{n}+A_{n} C_{n}+A_{n} F_{n}+B_{n} C_{n}+B_{n} F_{n}+C_{n} F_{n}\right) \\
& \quad=2\left(A_{n} B_{n} C_{n}+A_{n} B_{n} F_{n}+A_{n} C_{n} F_{n}+B_{n} C_{n} F_{n}\right) \quad n=3258
\end{aligned}
$$

7. Miscellanea

Functionalities. If we treat X_{n} as a point-valued function on a triangle's vertices, then the defining property of a tetradic center of $\triangle A B C$ is

$$
X_{n}\left(X_{n}(A, B, C), B, C\right)=A, \quad X_{n}\left(A, X_{n}(A, B, C), C\right)=B, \quad X_{n}\left(A, B, X_{n}(A, B, C)\right)=C
$$

which, as we know, is satisfied by $n=4,74$, and 1138 (at least).
Matt F. [7] has observed the following about $E=X_{4}$, given auxiliary point O :

$$
\begin{equation*}
X_{4}\left(A, B^{\prime}, C^{\prime}\right)=X_{4}\left(A^{\prime}, B, C^{\prime}\right)=X_{4}\left(A^{\prime}, B^{\prime}, C\right) \quad=: M \tag{19}
\end{equation*}
$$

where

$$
A^{\prime}:=X_{4}(O, B, C) \quad B^{\prime}:=X_{4}(A, O, C) \quad C^{\prime}:=X_{4}(A, B, O)
$$

The common derived point has barycentric coordinates

$$
M=\frac{1}{\left(-\frac{u_{O}}{u_{E}}+\frac{v_{O}}{v_{E}}+\frac{w_{O}}{w_{E}}\right)+2 u_{O}^{+} v_{O} w_{O}}: \cdots: \cdots
$$

Replacing X_{4} with X_{74} or X_{1138} in (19) doesn't work. This author is currently unaware of counterpart relations for tetradic centers D and F.

Relatedly, $\bigcirc A B^{\prime} C^{\prime}, \bigcirc A^{\prime} B C^{\prime}, \bigcirc A^{\prime} B^{\prime} C$ are concurrent for $n=4$ and $n=74$, but not $n=1138$. For $n=4$, the point of concurrency has coordinates that curiously incorporate those of M above

$$
\frac{1}{u_{M}^{-}\left(u_{O}^{+}+v_{O}^{+}+w_{O}^{+}\right)-u_{O}^{-}\left(u_{O}+v_{O}+w_{O}\right)\left(u_{E}^{+}+v_{E}^{+}+w_{E}^{+}\right)}: \cdots: \cdots
$$

For $n=74$, the coordinates are exceedingly unwieldy. Note that, because X_{74} lies on the circumcircle of its host triangle, the point of concurrency would be the direct analog of M for $n=74$, if such a point existed.
Reflections and perspectors. In the following, P_{A}, P_{B}, P_{C} are the reflections of point P in the $\triangle A B C$'s side-lines $B C, C A, A B$. Also, calling points X, Y, Z "perspective" means that " $\triangle X Y Z$ is perspective with $\triangle A B C$ "; that is, $X A, Y B, Z C$ are concurrent at point called the perspector of the two triangles.

- The locus of points P whose reflections P_{A}, P_{B}, P_{C} are perspective is known to be $K_{+} .{ }^{34}$ (So, the triad members are among these points.) For any such point P and corresponding perspector P^{\prime}, the line $P P^{\prime}$ is parallel to the Euler line.
- Paul Yiu [18] observed that D_{A}, D_{B}, D_{C} are collinear and perspective (and asserted that D is the only point whose reflections have both properties); specifically, their line is perpendicular to the Euler line at E. The perspector is $D^{\prime}:=X_{5627}$.
- Points E_{A}, E_{B}, E_{C} lie on the circumcircle, and their perspector is $E^{\prime}:=E$.
- Points F_{A}, F_{B}, F_{C} have perspector $F^{\prime}:=X_{14451}$.
- For (P, Q, R) some permutation of the triad, the circumcenters of $\bigcirc P_{A} P_{B} P_{C}$ and $\bigcirc Q_{A} Q_{B} Q_{C}$ are collinear with $R_{\star} \cdot{ }^{35}$ (Figure 15.) This is simply a repackaging of some concurrence results from Section 3, since, for any point P, the circumcenter of $\bigcirc P_{A} P_{B} P_{C}$ is P^{+}, the isogonal conjugate of P.
Also, $\bigcirc D_{A} D_{B} D_{C}$ contains E, and $\bigcirc E_{A} E_{B} E_{C}$ contains D, but $\bigcirc F_{A} F_{B} F_{C}$ contains no triad member.

Some related facts

- Lines $E_{A} F_{A}, E_{B} F_{B}, E_{C} F_{C}$ concur at a point U (not indexed in ETC), and lines $D_{A} E_{A}, D_{B} E_{B}$, $D_{C} E_{C}$ concur at $W=X_{1304}$.
Lines $F_{A} D_{A}, F_{B} D_{B}, F_{C} D_{C}$ do not concur. However, they determine a triangle perspective with $\triangle A B C$, with perspector V (not in $E T C$).

[^15]

Figure 15
Points U, V, W lie on the circumcircle. (Figure ??.) Their coordinates are as follows: ${ }^{36}$

$$
U=\frac{u_{D} u_{F}}{\delta_{a}}: \cdots: \cdots \quad W=\frac{u_{D} u_{E}}{\delta_{a}}: \cdots: \cdots \quad V=\frac{u_{D} u_{F}}{\delta_{a}\left(6 \tau^{2} \delta_{b} \delta_{c} u_{F}-a^{2} b^{2} c^{2}\right)}: \cdots: \cdots
$$

- Generally, $\bigcirc P_{A} B C, \bigcirc P_{B} C A, \bigcirc P_{C} A B, \bigcirc P_{A} P_{B} P_{C}$ concur at a point with coordinates

$$
\frac{u_{P}}{\left(-\frac{u_{P}}{u_{E}}+\frac{v_{P}}{v_{E}}+\frac{w_{P}}{w_{E}}\right)\left(u_{P}+v_{P}+w_{P}\right)-\left(\frac{u_{P}^{2}}{u_{E}}+\frac{v_{P}^{2}}{v_{E}}+\frac{w_{P}^{2}}{w_{E}}\right)}: \cdots: \cdots
$$

For $P=D$, this point is $E=E^{\prime}$. For $P=F$, the point is D^{\prime}. For $P=E$, the expression for the point becomes undefined (understandably, because the four circles coincide with the circumcircle); however, as P approaches E along K_{+}, the point of concurrency approaches X_{1141}, the Gibert Point.

- The Yiu hyperbola $\left(\Gamma_{D}\right)$ contains D^{\prime} and $E^{\prime}=E$ (the latter by definition), but not F^{\prime}. Conic Γ_{F} contains $E^{\prime}=E$ by definition, but neither D^{\prime} nor F^{\prime}; conic Γ_{E} contains none of $D^{\prime}, E^{\prime}, F^{\prime}$.

A Search for Centers. A note about tetradic centers should probably include a few words about the search for other such centers. These are those words ...

Triad members D, E, F are in a class of triangle centers whose barycentric coordinates are homogeneous in the squares of side-lengths of $\triangle A B C$; this is convenient in that it avoids messy invocations of the square root. We can write the coordinates of such a center, T, thusly:

$$
T:=f_{2}\left(a^{2}, b^{2}, c^{2}\right): f_{2}\left(b^{2}, c^{2}, a^{2}\right): f_{2}\left(c^{2}, a^{2}, b^{2}\right)
$$

for some homogeneous rational function such that $f_{2}(x, y, z)=f_{2}(x, z, y)$; we may take f_{2} to have degree -1 . Applying the function to $\triangle T B C$, the resulting T-center will have these barycentric coordinates (relative to $\triangle A B C$):

[^16]\[

$$
\begin{aligned}
T^{\prime}:= & u_{T} f_{2}\left(a^{2}, \bar{b}^{2}, \bar{c}^{2}\right) \\
& : v_{T} f_{2}\left(a^{2}, \bar{b}^{2}, \bar{c}^{2}\right)+\left(u_{T}+v_{T}+w_{T}\right) f_{2}\left(\bar{b}^{2}, \bar{c}^{2}, a^{2}\right) \\
& : w_{T} f_{2}\left(a^{2}, \bar{b}^{2}, \bar{c}^{2}\right)+\left(u_{T}+v_{T}+w_{T}\right) f_{2}\left(\bar{c}^{2}, a^{2}, \bar{b}^{2}\right)
\end{aligned}
$$
\]

where we have

$$
\bar{b}^{2}:=|T C|^{2}=\frac{a^{2} v_{T}^{2}+b^{2} u_{T}^{2}+\left(a^{2}+b^{2}-c^{2}\right) u_{T} v_{T}}{\left(u_{T}+v_{T}+w_{T}\right)^{2}} \quad \bar{c}^{2}:=|T B|^{2}=\frac{a^{2} w_{T}^{2}+c^{2} u_{T}^{2}+\left(a^{2}-b^{2}+c^{2}\right) u_{T} w_{T}}{\left(u_{T}+v_{T}+w_{T}\right)^{2}}
$$

To make T tetradic, "all we need to do" is choose f_{2} so that the last two barycentric coordinates of T^{\prime} are identically zero for all a, b, c (and the first component is non-zero). ${ }^{37}$ In slightly-morecompact form, we seek solutions to this functional system:

$$
-\frac{f_{2}\left(a^{2}, \bar{b}^{2}, \bar{c}^{2}\right)}{f_{2}\left(a^{2}, b^{2}, c^{2}\right)+f_{2}\left(b^{2}, c^{2}, a^{2}\right)+f_{2}\left(a^{2}, b^{2}, c^{2}\right)}=\frac{f_{2}\left(\bar{b}^{2}, \bar{c}^{2}, a^{2}\right)}{f_{2}\left(b^{2}, c^{2}, a^{2}\right)}=\frac{f_{2}\left(\bar{c}^{2}, a^{2}, \bar{b}^{2}\right)}{f_{2}\left(c^{2}, a^{2}, b^{2}\right)}
$$

A brute-force search for such solutions quickly gets out of hand.

- If the numerator of f_{2} has degree 0 , we can determine without too much difficulty that the function must have this form (up to a multiplied constant):

$$
f_{2}(x, y, z)=\frac{1}{x-(y+z)}
$$

Therefore, triad member E is the only tetradic center for this case.

- If the numerator of f_{2} has degree 1 , then already the situation explodes in symbolic complexity. Consider f_{2} in the form

$$
f_{2}(x, y, z)=\frac{h_{1} x+h_{2}(y+z)}{k_{1} x^{2}+k_{2} x(y+z)+k_{3}(y+z)^{2}+k_{4} y z}
$$

Expanding an ostensibly-vanishing coordinate of T^{\prime} using this function yields a polynomial with over three million terms; whether it factors is beyond this author's available computing power to determine. Gathering terms by $a^{p} b^{q} c^{r}$ - each coefficient of which must vanish- yields just-over 700 equations in the h_{i} and k_{i}. Assuming ${ }^{38}$ this author has correctly performed the appropriate casework, the equations reveal no new tetradic centers; rather, they merely reconfirm the tetradic nature of triad members D and (via simplification of f_{2}) E, as shown:

$\left(h_{1}, h_{2} ; k_{1}, k_{2}, k_{3}, k_{4}\right)$	$f_{2}(x, y, z)$	T
$(1,0 ; 2,-1,-1,4)$	$\frac{x}{2 x^{2}-x(y+z)-(y-z)^{2}}$	D
$\left(h_{1}, h_{2} ; h_{1}, h_{2}-h_{1},-h_{2}, 0\right)$	$\frac{1}{x-(y+z)}$	E

The extraneous solutions have these forms ${ }^{39}$

[^17]\[

$$
\begin{array}{ccc}
\left(h_{1}, h_{2} ; k_{1}, k_{2}, k_{3}, k_{4}\right) & f_{2}(x, y, z) & T \\
\hline(2,-1 ; 1,-2,1,-4) & \frac{2 x-(y+z)}{x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 z x} & X_{524} \\
\left(h_{1}, h_{2} ; 1,-1,0,1\right) & \frac{h_{1} x+h_{2}(y+z)}{(x-y)(x-z)} & -
\end{array}
$$
\]

- If the numerator of f_{2} has degree 3 or more, then brute-force symbolic manipulation seems impractical.

Acknowledgements

The author greatly appreciates Clark Kimberling's Encyclopedia of Triangle Centers, whose rabbit-holes of cross-reference revealed countless relations among points mentioned in this note. Likewise, Bernard Gibert's Cubics in the Triangle Plane catalogue and associated notes provided many key insights. Finally, the GeoGebra dynamic geometry application - with convenient incorporation of Kimberling centers and Gibert cubics - facilitated exploration and discovery of numerous unexpected connections, confirmed symbolically via Wolfram's Mathematica.

References

[1] Nathan Altshiller-Court. "A historical puzzle". In: The Mathematics Teacher 52.1 (1959), pp. 31-32.
[2] Blue. Mathematics Stack Exchange: "Pseudovertices" of a triangle [Answer]. 2021. URL: https://math.stackexchange.com/a/4283534/409. accessed: 02.22.2022.
[3] Francisco Javier García Capitán. ADGEOM 2458. 2015. URL: https: / / aphyacinthos . blogspot.com/2019/10/adgeom-2458.html. accessed: 02.02.2022.
[4] Lazare Carnot. Géométrie de position. J.B.M. Duprat, 1803, p. 162. article 130.
[5] "Concurrency of Four Euler Lines". In: Forum Geometricorum 1 (2001), pp. 59-69. https: //forumgeom.fau.edu/FG2001volume1/FG200109.pdf.
[6] Jean-Pierre Ehrmann. "Similar pedal and cevian triangles". In: Forum Geometricorum 3 (2003), pp. 101-104. https://forumgeom.fau.edu/FG2003volume3/FG200310.pdf.
[7] Matt F. MathOverflow: Equational theory of the orthoceter [Answer]. 2022. URL: https: //mathoverflow.net/a/425590/5609. accessed: 07.27.2022.
[8] F. V. Morley Frank Morley. Inversive Geometry. Oxford, 1931, p. 200.
[9] Bernard Gibert. Cubics in the Triangle Plane. URL: https://bernard-gibert.pagespersoorange.fr/index.html. accessed: 02.02.2022.
[10] Bernard Gibert. Pairs and Triads of points on the Neuberg Cubic connected with Euler Lines and Brocard Axes Isometric Parallel Chords. 2013; updated 2018. URL: https:// bernard-gibert.pagesperso-orange.fr/files/Resources/NeubergEuler.pdf. accessed: 02.02.2022.
[11] T. L. Heath. The Works of Archimedes. Cambridge University Press, 1897, p. 306.
[12] Clark Kimberling. "Central Points and Central Lines in the Plane of a Triangle". In: Mathematics Magazine 67 (1994), pp. 163-167.
[13] Clark Kimberling. Clark Kimberling's Encyclopedia of Triangle Centers - ETC. URL: https: //faculty.evansville.edu/ck6/encyclopedia/ETC.html. accessed: 02.02.2022.
[14] Floor van Lamoen. Hyacinthos 8129. 2003. URL: https://aphyacinthos.blogspot.com/ 2019/10/hyacinthos-8129.html. accessed: 02.02.2022.
[15] Lky. Euclid@Groups.io \#1006: an analogy with the orthocentric system. 2020. URL: https: //groups.io/g/euclid/message/1006. accessed: 08.16.2022.
[16] Ed Sandifer. How Euler Did It: The Euler Line. 2009. URL: http://eulerarchive.maa. org/hedi/HEDI-2009-01.pdf. accessed: 02.02.2022.
[17] Vu Thanh Tung. Euclid@Groups.io \#1009: an analogy with the orthocentric system [respose]. 2020. URL: https://groups.io/g/euclid/message/1009. accessed: 08.16.2022.
[18] Paul Yiu. ADGEOM 1022: An easy puzzle with a new triangle center. 2014. URL: https: //aphyacinthos.blogspot. com/2019/11/adgeom-1022-adgeom-1044.html. accessed: 07.28.2022.

[^0]: ${ }^{1}$ Clark Kimberling [12] codified the notion of a triangle center as a point with a fully-symmetric definition relative to its host triangle. Specifically here, a center's barycentric coordinates have the form $f(a, b, c): f(b, c, a): f(c, a, b)$, for some function f such that $f(a, b, c)=f(a, c, b)$ and such that f is homogenous in the triangle's side-lengths a, b, c. Kimberling's Encyclopedia of Triangle Centers (ETC) [13] currently documents and cross-references over fifty thousand instances, with the n-th one designated X_{n}.
 ${ }^{2}$ The Euler line contains numerous points commonly associated with a triangle; of primary interest to the current discussion: the orthocenter X_{4}, circumcenter X_{3}, and Euler infinity point X_{30} (the line's point-at-infinity). Amusingly, although the line has become a staple of triangle geometry (and features quite prominently in this note), Leonhard Euler's own interest in it seems to have begun and ended with observations about the distances between the orthocenter, circumcenter, and centroid X_{2}, only implicitly asserting the collinearity of those points. (See [16].)
 ${ }^{3}$ This is effectively the definition given by Bernard Gibert in [10]. See also Francisco Javier García Capitán [3], who observed that the locus of P that makes the Euler line of $\triangle P B C$ parallel to that of $\triangle A B C$ is a particular circumellipse, so that F is the fourth point of concurrence of the three associated circumellipses.
 ${ }^{4}$ See Section 7 for a functional formulation of this property.
 ${ }^{5}$ In Proposition 5 of his Book of Lemmas, Archimedes appears to exploit this property rather matter-of-factly to prove a result about tangent circles in an arbelos. (See Heath [11].) Nathan Altshiller-Court [1] credits Lazare Carnot [4] with re-discovering the property and calling attention to it for its own sake.

 6 "Lky" also erroneously claimed that X_{16} is tetradic.

[^1]: ${ }^{7}$ Here and throughout, proofs are omitted. The reader may verify results via, say, intensive manipulation of barycentric coordinates (introduced in the following section).
 ${ }^{8}$ Antreas Hatzipolakis, et al., [5] proved more generally for lines whose points L satisfy

 $$
 \mathcal{L}_{n}: \sum_{\text {cyc }}|L A|^{2}\left(|C A|^{n}-|A B|^{n}\right)=0
 $$

 that the \mathcal{L}_{n} lines of a point's associated triangles concur if and only if the \mathcal{L}_{-n} lines do. (The Euler line and Brocard axis correspond to $n=2,-2$.) Vu Thanh Tung has conjectured [17] that, for each n, there is a unique point P for which the \mathcal{L}_{n} lines of P 's associated triangles are parallel, and that this P is tetradic. The result is true for $n=2$, for which $P=F$. However, for $n \neq 2$, there is an entire locus of points P with the parallelism property; whether such a locus contains a unique triangle center - tetradic or otherwise - is not at all clear.
 ${ }^{9}$ In particular, the shadows have (signed) side-lengths in the proportion $\frac{a^{2}}{u_{D}}: \frac{b^{2}}{v_{D}}: \frac{c^{2}}{w_{D}}$, where $u_{D}: v_{D}: w_{D}$ are D 's barycentric coordinates. (See Section 1.) The flatness of the shadows is reconfirmed by the fact that $\frac{a^{2}}{u_{D}}+\frac{b^{2}}{v_{D}}+\frac{c^{2}}{w_{D}}=0$.

[^2]: ${ }^{10}$ The degenerate pedal triangle's circumcenter lies on the line at infinity, in the direction perpendicular to the line containing its vertices, and its centroid lies on the line of vertices, so its Euler line is perpendicular to that line.

[^3]: ${ }^{11} E T C: X(74)$ reference and Glossary "crosspoint" entry. Algebraically, the barycentric coordinates of D, E, F satisfy the relation in Footnote 16. Geometrically, D is the point of concurrence of the lines through $A E \cap$ $B F$ and $A F \cap B E, B E \cap C F$ and $B F \cap C E$, and $C E \cap A F$ and $C F \cap A E$.
 ${ }^{12}$ As credited in ETC Glossary entry for "crosspoint"; 10 September, 2012. Note that we can say more: The tangent at P to conic $A B C P Q$ (respectively, $A B C P R$) meets the non- R point where line $Q R$ meets conic $A B C P R$ (respectively, the non- Q point where $Q R$ meets $A B C P Q$).
 ${ }^{13}$ See ETC's X(5627) entry, referencing a puzzle by Paul Yiu [18].

[^4]: ${ }^{14}$ Omitted v and w coordinates for any triangle center derive from u via cyclic substitutions $a \rightarrow b \rightarrow c \rightarrow a$ and $u_{P} \rightarrow v_{P} \rightarrow w_{P} \rightarrow u_{P}$. The same substitutions govern cyclic sums.
 ${ }^{15}$ Intriguingly, the E-, D-, and F-sums in (4) are in geometric progression $1:-3: 9$, as are the appropriatelyordered "left-sum over right-sum" ratios in (9). The latter calculations underlie the identical progression in (16).

[^5]: ${ }^{17}$ Interestingly, D disappears from the area formula, but appears in the equation for the line through the other two triad members.

[^6]: ${ }^{18}$ The proportion can be gleaned from Figures 4 and 5. Individual values arise from the sums (9) and this formula:

 $$
 \tau^{3 / 2} \tan \theta_{P Q}=\left(\sum_{\mathrm{cyc}} \frac{a^{2}}{u_{D} u_{P} u_{Q}}\left(\frac{1}{v_{P} w_{Q}}-\frac{1}{v_{Q} w_{P}}\right)\right) /\left(\sum_{\mathrm{cyc}} \frac{\delta_{a}}{u_{P} u_{Q}}\left(\frac{1}{v_{P} w_{Q}}-\frac{1}{v_{Q} w_{P}}\right)\right)
 $$

 ${ }^{19}$ For instance, let the Euler line meet side-lines $A B$ and $A C$ at B^{\prime} and C^{\prime}, then the line through A and the circumcenter of $\triangle A B^{\prime} C^{\prime}$ meets the circumcircle at X_{110}. (This is Randy Hutson's 6th construction of X_{110}. See $E T C^{\circ}$ s $\mathrm{X}(110)$ entry.) The line through this point, parallel to the Euler line, meets the circumcircle again at D^{\prime}.

[^7]: ${ }^{20}$ Respective cevians through P and through P^{+}are mutual reflections in the corresponding angle bisectors of $\triangle A B C$. The points where respective cevians through P and those through P^{-}meet the side-lines of $\triangle A B C$ are mutual reflections in the midpoints of the corresponding sides.
 ${ }^{21}$ Caveat: In the trilinear coordinate system, say $P=h: j: k$, the isogonal conjugate coordinates involve simple reciprocation, $P^{+}=\frac{1}{h}: \frac{1}{j}: \frac{1}{k}$, so that the isogonal conjugate of P is sometimes denoted P^{-1}. (In trilinear coordinates, $P^{-}=\frac{1}{a^{2} h}: \frac{1}{b^{2} j}: \frac{1}{c^{2} k}$.) Hopefully, this note's barycentric bias will not cause confusion.

[^8]: ${ }^{22}$ That E and F satisfy this equation, and that D does not, is stated previously in relation (5).

[^9]: ${ }^{23}$ See the ETC Glossary "isoconjugate" entry.
 ${ }^{24}$ In trilinear coordinates, with $P=h: j: k$, the definition is a bit cleaner: $P^{\circ}:=\frac{1}{h h_{Q}}: \frac{1}{j j_{Q}}: \frac{1}{k k_{Q}}$.
 ${ }^{25}$ ETC's "Central Lines" table identifies this line as L_{661}, the trilinear pole of X_{662}, and currently lists 149 triangle centers on it.

[^10]: ${ }^{26}$ Since the circumcenter of $\triangle A B C$ is the orthocenter of the midpoint triangle, this conic-of-centers is a rectangular hyperbola. The conic-of-centers for circumconics through any fixed P passes through the midpoints of the sides; the conic-of-centers for any fixed P on the circumcircle passes through the circumcenter.

[^11]: ${ }^{27}$ While $M_{E}=X_{107}$, point M_{F} is not in ETC.
 ${ }^{28}$ Gibert notes that the cubic was first introduced in Joseph Jean Baptiste Neuberg's 1884 paper "Mémoire sur le tétraédre" in Mémoires de l'Académie de Belgique

[^12]: ${ }^{29}$ This result is by far the most difficult in this note to verify algebraically. One approach is to encode the condition that A and its isotomic conjugate relative to $\triangle P B C$ are collinear with $\triangle P B C$'s " $D^{-"}$ (that is, its X_{3260}); likewise with B and $\triangle A P C$. Eliminating P 's w-coordinate from the system leaves an 17000 -term barycentric polynomial in u and v that factors into expressions corresponding to solutions D, E, F; a final, 1600 -term factor lacks the required symbolic symmetry to yield a triangle center, and so is extraneous. A more-direct demonstration is desirable.
 ${ }^{30}$ In contrast to the previous result, this one - when formulated in terms of tripolar coordinates - is an almosttrivial consequence of the fact that each point P on K_{+}is such that Euler lines (and Brocard axes) of $\triangle P B C$, $\triangle A P C, \triangle A B P$, and $\triangle A B C$ concur. See [5], Corollary 6 , wherein our K_{+}corresponds to their \mathcal{C}_{2}.
 ${ }^{31}$ See the ETC Glossary "Ceva conjugate" entry. The Q-Ceva-conjugate of P has barycentric coordinates

 $$
 u_{P}\left(-\frac{u_{P}}{u_{Q}}+\frac{v_{P}}{v_{Q}}+\frac{w_{P}}{w_{Q}}\right): v_{P}\left(\frac{u_{P}}{u_{Q}}-\frac{v_{P}}{v_{Q}}+\frac{w_{P}}{w_{Q}}\right): w_{P}\left(\frac{u_{P}}{u_{Q}}+\frac{v_{P}}{v_{Q}}-\frac{w_{P}}{w_{Q}}\right)
 $$

 The D^{+}-Ceva-conjugate of D is Kimberling's X_{2132}; the D^{-}counterpart is not currently listed in ETC.

[^13]: ${ }^{32}$ That is, if three members of the pencil have the equations $p(u, v, w)=0, q(u, v, w)=0, r(u, v, w)=0$, then $r(u, v, w) \propto \alpha p(u, v, w)+\beta q(u, v, w)$ for some α and β (and constant of proportionality) that are symmetric expressions in side-lengths a, b, c. In the decompositions presented, we abuse notation so that the name of a cubic also represents the left-hand side of its equation.

[^14]: ${ }^{33}$ The \varnothing mark was chosen to evoke the fusion of line and circle. The visual assertion of "not K_{\circ} " is a nice bonus.

[^15]: ${ }^{34}$ See Gibert [9], "K001".
 ${ }^{35}$ Of course, we must make appropriate accommodation for the fact that "circle" $\bigcirc D_{A} D_{B} D_{C}$ is a line and its "circumcenter" D^{+}is the Euler line's point at infinity.

[^16]: ${ }^{36}$ That's not a typographical error. While points V and W have coordinates derived from those of the points that determine them, point U-determined by E and F - has coordinates derived from those of D and F. Appealing to triadic duality doesn't seem to make sense of this situation.

[^17]: ${ }^{37}$ We can therefore ignore instances of T on the line at infinity, since such points have $u_{T}+v_{T}+w_{T}=0$, causing all coordinates of T^{\prime} to vanish simultaneously.
 ${ }^{38}$ The reader is advised to heed the wisdom of Felix Unger in this regard.
 ${ }^{39}$ For X_{524}, we can ignore the denominator of f_{2} since it is symmetric in x, y, z.

