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We consider three triangle centers1 of a generic, non-degenerate 4ABC: Orthocenter E := X4 is
familiar as the point where the triangle’s altitudes concur. Point D := X74, on the circumcircle, is
where the parallels at A, B, C to the Euler line,2 upon reflection in corresponding angle bisectors
of the triangle, concur. Finally, F := X1138 is the unique point for which the Euler lines of 4ABC,
4FBC, 4AFC, 4ABF are parallel.3

Figure 1. Triangle Centers D = X74, E = X4, F = X1138

The points’ disparate definitions belie a highly unusual commonality:

If P is a specified triangle center of 4ABC, then vertices A, B, C themselves
are the corresponding centers for respective triangles 4PBC, 4APC, 4ABP .4

This aspect of orthocenter E is well-known and age-old, with references dating to Archimedes,5 and
it is common and significant enough in geometric discourse to have elicited a collective term for the
points A, B, C, E: orthocentric system (or quadrangle or quadrilateral or group or set). This note
proposes generalizing that term to centric tetrad for points A, B, C, P exhibiting the described
property, dubbing P a tetradic center of 4ABC.

In 2003, Floor van Lamoen [14] observed the tetradic nature of D; in 2021, this author [2] did
the same for F , although “Lky” also asserted this a year earlier [15].6

Whether additional tetradic centers exist is an open question. Apart from a limited investi-
gation at the end, this note doesn’t address that question directly; rather, it surveys properties

1Clark Kimberling [12] codified the notion of a triangle center as a point with a fully-symmetric definition relative
to its host triangle. Specifically here, a center’s barycentric coordinates have the form f(a, b, c) : f(b, c, a) : f(c, a, b),
for some function f such that f(a, b, c) = f(a, c, b) and such that f is homogenous in the triangle’s side-lengths a,
b, c. Kimberling’s Encyclopedia of Triangle Centers (ETC) [13] currently documents and cross-references over fifty
thousand instances, with the n-th one designated Xn.

2The Euler line contains numerous points commonly associated with a triangle; of primary interest to the cur-
rent discussion: the orthocenter X4, circumcenter X3, and Euler infinity point X30 (the line’s point-at-infinity).
Amusingly, although the line has become a staple of triangle geometry (and features quite prominently in this note),
Leonhard Euler’s own interest in it seems to have begun and ended with observations about the distances between
the orthocenter, circumcenter, and centroid X2, only implicitly asserting the collinearity of those points. (See [16].)

3This is effectively the definition given by Bernard Gibert in [10]. See also Francisco Javier Garćıa Capitán [3],
who observed that the locus of P that makes the Euler line of 4PBC parallel to that of 4ABC is a particular
circumellipse, so that F is the fourth point of concurrence of the three associated circumellipses.

4See Section 7 for a functional formulation of this property.
5In Proposition 5 of his Book of Lemmas, Archimedes appears to exploit this property rather matter-of-factly to

prove a result about tangent circles in an arbelos. (See Heath [11].) Nathan Altshiller-Court [1] credits Lazare Carnot
[4] with re-discovering the property and calling attention to it for its own sake.

6“Lky” also erroneously claimed that X16 is tetradic.
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of D, E, F and relationships among them as a triad, which may-or-may-not provide clues in the
search for any tetradic siblings. Before bogging-down in formulas and equations, we’ll describe two
more commonalities exhibited by our triad members individually, and a key property they exhibit
collectively.7

Euler and Brocard concurrences. We defined F as the point for which the Euler lines of
associated triangles 4FBC, 4AFC, 4ABF , and 4ABC itself, are parallel; that is, these four
lines are concurrent at the Euler line’s point-at-infinity, X30. Also, since triad member D lies on
the circumcircle of 4ABC, the Euler lines of its associated triangles concur at the circumcenter.
Finally, it’s not too difficult to show that the Euler lines of E’s associated triangles concur at
X5, the nine-point center of 4ABC. So, such Euler concurrency is a feature common to all triad
members; it is, however, not exclusive to them: the locus of all points P with this property is
known to be the union of the circumcircle and the Neuberg circumcubic, about which we’ll have
more to say in Sections 3 and 5.

Frank and F. V. Morley [8] showed that the Euler lines of a point’s associated triangles concur
if and only if the Brocard axes of those triangles do.8 The points of Brocard concurrency for D,
E, F are, respectively, X3 (the circumcenter), X52 (the orthocenter of the orthic triangle), X15786

(helpfully identified by ETC as the intersection of the Brocard axes of the triangulation of X(1138)).

Shadowplay. Recall that the pedal triangle (respectively, cevian triangle) of a non-vertex point P
has its vertices where the perpendiculars (respectively, cevians) through P meet the side-lines of
4ABC. (Figure 2.)

Jean-Pierre Ehrmann [6] proved that E and F are the only instances of P whose pedal and
cevian triangles are similar, E’s directly (and trivially so!) and F ’s indirectly. Triad member D
gets no consideration here: as with every point on the circumcircle, D’s pedal triangle degenerates
to the point’s Simson line (which, for D, happens to be perpendicular to the Euler line); since its
cevian triangle is non-degenerate, similarity simply isn’t in play.

And yet ...

We can say that D’s flat pedal triangle is similar to the shadow of D’s cevian triangle cast in
the direction of that triangle’s own Euler line.9 (Figure 3.) This, along with a slight re-thinking of
Ehrmann’s result, makes possible a triad-inclusive formulation:

Triad member P ’s cevian triangle, scaled in the direction of its Euler
line by an appropriate factor k, is similar to P ’s pedal triangle. Cases
P = D,E, F correspond to k = 0, 1,−1. Moreover, each of D, E, F is
the only non-vertex point with this property for its respective value of k.

7Here and throughout, proofs are omitted. The reader may verify results via, say, intensive manipulation of
barycentric coordinates (introduced in the following section).

8Antreas Hatzipolakis, et al., [5] proved more generally for lines whose points L satisfy

Ln :
∑
cyc

|LA|2 (|CA|n − |AB|n) = 0

that the Ln lines of a point’s associated triangles concur if and only if the L−n lines do. (The Euler line and Brocard
axis correspond to n = 2,−2.) Vu Thanh Tung has conjectured [17] that, for each n, there is a unique point P for
which the Ln lines of P ’s associated triangles are parallel, and that this P is tetradic. The result is true for n = 2,
for which P = F . However, for n 6= 2, there is an entire locus of points P with the parallelism property; whether
such a locus contains a unique triangle center —tetradic or otherwise— is not at all clear.

9In particular, the shadows have (signed) side-lengths in the proportion a2

uD
: b2

vD
: c2

wD
, where uD : vD : wD are D’s

barycentric coordinates. (See Section 1.) The flatness of the shadows is reconfirmed by the fact that a2

uD
+ b2

vD
+ c2

wD
= 0.



A TREATISE ON A TRIAD OF TETRADIC TRIANGLE CENTERS 3

Figure 2. Pedal Triangles 4A′B′C ′ and Cevian Triangles 4A′′B′′C ′′ of E, F , and D

The simpler formulation “P ’s cevian and pedal triangles have similar Euler shadows” is also
triad-inclusive: for P = E or F , the similar triangles necessarily have similar Euler shadows; for
P = D, the pedal triangle serves as its own Euler shadow.10 However, this property holds for a
continuum of points P on a circumscribed degree-13 curve defined by this relation:

∑
cyc

(4B +4C) (b2b̄2 − c2c̄2) (−a2ā2 + b2b̄2 + c2c̄2)

a2 42
B 42

C − ā2 42
A |4ABC|2

= 0 ā := |PA|, 4A := |4PBC|, etc

10The degenerate pedal triangle’s circumcenter lies on the line at infinity, in the direction perpendicular to the
line containing its vertices, and its centroid lies on the line of vertices, so its Euler line is perpendicular to that line.
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Figure 3. Euler Shadow 4A′′′B′′′C ′′′ of the Cevian Triangle of D

Are D, E, F the only triangle centers on this curve? If not, then might other centers on the curve
be tetradic? These questions remain open.

Crosspointillism and Triadic Duality. ETC notes that D is the crosspoint of E and F , and
thus that E and F are D-cross-conjugates of each other.11 We also have that D is its own D-cross-
conjugate, a fact that may seem too trivial to mention, but isn’t: it’s our first encounter with E
and F exhibiting a kind of duality for which D exhibits the corresponding self-duality. Indeed, the
notion appears often enough in this note to warrant notation for a triad member’s “dual point”;
we’ll use this:

D? := D E? := F F? := E

Thus, we can say that D is the crosspoint of P and P? for any triad member P ; and —writing kP
for the “appropriate [scale] factor” described in Shadowplay above— that kP = −kP? . Even so, the
reader can expect future invocations of the notion to be a bit more profound.

Randy Hutson characterizes the crosspoint P of points Q and R as the intersection of the tangent
lines at Q and R to the circumconic ABCQR.12 This is a keen insight in general, but especially so
in the case of the triad, since ABCEF is not just any conic: it is specifically the unique rectangular
circumhyperbola with asymptotes parallel and perpendicular to the Euler line. ETC identifies this
as the Yiu hyperbola,13 and we’ll see it throughout this note.

Hutson’s insight, then, inspires the triad family portrait that serves as this note’s cover image.
It also suggests this not-exactly-practical triad construction:

Given 4ABC, its circumcircle, its Euler line, and its Yiu hyperbola, the line
meets the hyperbola at E; the hyperbola’s tangent at E meets the circle at D;
and the “other” tangent from D meets the hyperbola at F .

11ETC: X(74) reference and Glossary “crosspoint” entry. Algebraically, the barycentric coordinates of D, E,
F satisfy the relation in Footnote 16. Geometrically, D is the point of concurrence of the lines through AE ∩
BF and AF ∩BE, BE ∩ CF and BF ∩ CE, and CE ∩AF and CF ∩AE.

12As credited in ETC Glossary entry for “crosspoint”; 10 September, 2012. Note that we can say more: The
tangent at P to conic ABCPQ (respectively, ABCPR) meets the non-R point where line QR meets conic ABCPR
(respectively, the non-Q point where QR meets ABCPQ).

13See ETC’s X(5627) entry, referencing a puzzle by Paul Yiu [18].
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1. Barycentric Basics

Barycentric u : v : w coordinates of the triad points are as follows:14

D :=
a2

(a2 − b2 + c2)(a2 + b2 − c2)− a2(−a2 + b2 + c2)
: · · · : · · ·

E :=
1

−a2 + b2 + c2
:

1

−b2 + c2 + a2
:

1

−c2 + a2 + b2
(1)

F :=
a2b2c2

(−a2 + b2 + c2 − bc)2(−a2 + b2 + c2 + bc)2 + 9b2c2(c2 − a2)(a2 − b2)
: · · · : · · ·

Of course, as homogeneous coordinates, these are determined only up to a non-zero multiplied
constant. (We could, therefore, divide F ’s coordinates through by a2b2c2, but we’ll leave them
as-is so that all coordinates of all triad points have degree −2 as rational functions of a, b, c.) For
the sake of specificity, any future reference to a particular coordinate means one of the expressions
indicated in (1); this gives us the freedom to write non-homogeneous equations such as these:

uD + vD + wD

uDvDwD
= −ρ

2τ2

µ2
uE + vE + wE

uEvEwE
= τ2

uF + vF + wF

uF vFwF
= −3ρ4τ2

µ4

where

τ :=
√

(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c) = 4 |4ABC|

ρ :=
√
− (a2 δbδc + b2 δcδa + c2 δaδb) µ := abc

δa := b2 − c2 δb := c2 − a2 δc := a2 − b2 δ := δaδbδc

The coordinate expressions satisfy a litany of identities, such as these cyclic sums:15

(2)
∑
cyc

a2

uD
= 0

∑
cyc

a2

uE
= τ2

∑
cyc

a2

uF
= −ρ

2τ2

µ2

(3)
∑
cyc

δa
uD

= −τ
2δ

µ2

∑
cyc

δa
uE

= 0
∑
cyc

δa
uF

=
6τ2δ

µ2

(4)
∑
cyc

a2δa
uD

= −6δ
∑
cyc

a2δa
uE

= 2δ
∑
cyc

a2δa
uF

= 18δ

(5)
∑
cyc

a2δa
u2D

= −τ
4δ

µ2

∑
cyc

a2δa
u2E

=
∑
cyc

a2δa
u2F

= 0

(6)
∑
cyc

a2δa
uEuF

=
2τ4δ

µ2

∑
cyc

a2δa
uDuE

=
∑
cyc

a2δa
uDuF

= 0

(7)
∑
cyc

1

uDuE

(
1

v2E
− 1

w2
E

)
=
∑
cyc

1

uDuF

(
1

v2F
− 1

w2
F

)
= 0

14Omitted v and w coordinates for any triangle center derive from u via cyclic substitutions a→ b→ c→ a and
uP → vP → wP → uP . The same substitutions govern cyclic sums.

15Intriguingly, the E-, D-, and F -sums in (4) are in geometric progression 1 : −3 : 9, as are the appropriately-
ordered “left-sum over right-sum” ratios in (9). The latter calculations underlie the identical progression in (16).



6 BLUE

(8)
∑
cyc

a2

uDuE

(
b2

v2E
− c2

w2
E

)
=
∑
cyc

a2

uDuF

(
b2

v2F
− c2

w2
F

)
= 0

∑
cyc

a2

u2DuE

(
1

vDwE
− 1

vEwD

)
= −τ

6δ

µ2

∑
cyc

δa
uDuE

(
1

vDwE
− 1

vEwD

)
= − τ2

uDvDwD
(9)

∑
cyc

a2

u2DuF

(
1

vDwF
− 1

vFwD

)
=

9τ6ρ4δ

µ6

∑
cyc

δa
uDuF

(
1

vDwF
− 1

vFwD

)
=

τ2ρ4

µ4 uDvDwD

∑
cyc

a2

uDuEuF

(
1

vEwF
− 1

vFwE

)
= −6τ6ρ2δ

µ4

∑
cyc

δa
uEuF

(
1

vEwF
− 1

vFwE

)
=

2τ2ρ2

µ2 uDvDwD

∑
cyc

a2

uDu2E

(
1

vDwE
− 1

vEwD

)
=
τ6δ

µ2

∑
cyc

a2

uDuEuF

(
1

vDwE
− 1

vEwD

)
= −3τ6ρ2δ

µ4
(10)

∑
cyc

a2

uDuEuF

(
1

vDwF
− 1

vFwD

)
= −τ

6δ

µ6
ξ

∑
cyc

a2

uDu2F

(
1

vDwF
− 1

vFwD

)
=

3τ6ρ2δ

µ8
ξ

∑
cyc

a2

u2EuF

(
1

vEwF
− 1

vFwE

)
=

6τ6ρ2δ

µ4

∑
cyc

a2

uEu2F

(
1

vEwF
− 1

vFwE

)
= −2τ6δ

µ6
ξ

ξ :=

(
µ+

a

uE
+

b

vE
+

c

wE

)(
µ+

a

uE
− b

vE
− c

wE

)(
µ− a

uE
+

b

vE
− c

wE

)(
µ− a

uE
− b

vE
+

c

wE

)
Additional identities include these symmetric relations:16

(11)
1

uD

(
1

vEwF
+

1

vFwE

)
=

1

vD

(
1

wEuF
+

1

wFuE

)
=

1

wD

(
1

uEvF
+

1

uF vE

)
=

2

uDvDwD

uD
a2δa

(
1

vEwF
− 1

vFwE

)
=

vD
b2δb

(
1

wEuF
− 1

wFuE

)
=
wD

c2δc

(
1

uEvF
− 1

uF vE

)
= −2τ2

µ2
(12)

uE
a2δa

(
1

vDwE
− 1

vEwD

)
=

vE
b2δb

(
1

wDuE
− 1

wEuD

)
=

wE

c2δc

(
1

uDvE
− 1

uEvD

)
=

τ2

µ2
(13)

uF
a2δa

(
1

vDwF
− 1

vFwD

)
=

vF
b2δb

(
1

wDuF
− 1

wFuD

)
=

wF

c2δc

(
1

uDvF
− 1

uF vD

)
= − τ

2

µ2
(14)

a2δa

(
1

uEuF
− 1

u2D

)
= b2δb

(
1

vEvF
− 1

v2D

)
= c2δc

(
1

wEwF
− 1

w2
D

)
=
τ4δ

µ2
(15)

Many results in this note trace back to these relations.

16 Relation (11) in proportional form

uD : vD : wD ∝ 1

vEwF
+

1

vFwE
:

1

wEuF
+

1

wFuE
:

1

uEvF
+

1

uF vE

is precisely the barycentric definition of D as the crosspoint of E and F .
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2. Geometric Generalities in 4DEF

The area of 4DEF is given by

|4DEF |
|4ABC|

=

∣∣∣∣∣∣
uD vD wD

uE vE wE

uF vF wF

∣∣∣∣∣∣ =
4τ6

a4b4c4
|δaδbδc uEvEwE uF vFwF |

The barycentric equations of the side-lines are17

←→
EF :

∑
cyc

a2δa
uDuEuF

u = 0
←→
DE :

∑
cyc

a2δa
uDu2E

u = 0
←→
DF :

∑
cyc

a2δa
uDu2F

u = 0

We can exploit the triad’s notion of duality by expressing all three equations in the common form

←→
PQ :

∑
cyc

a2δa
uPuQuR?

u = 0 {P,Q,R} = {D,E, F}

The lengths of the sides of 4DEF are given by

|EF |2 =
2a4b4c4

9τ2ρ8

∑
cyc

a4δ2a
u2DuEu

2
F

9|EF |2 − 4|DE|2 = 8
τ4δ2aδ

2
b δ

2
c

ρ6
= 4|FD|2 − |EF |2

From this, we can deduce that 5|EF |2 = 2|FD|2 + 2|DE|2 and thus that, by Apollonius’ Theorem,
the D-median has length |EF |. Some follow-on consequences appear below, where M is the mid-
point of DE, N is the midpoint of DM (and lies on the Euler line), and OD and OF (which we’ll
encounter again in Section 4) are the respective midpoints of MN and DE; also, references to the
Euler line and circumcircle indicate those elements of host triangle 4ABC. (Figure 4.)

Figure 4. Geometry of 4DEF , showing the circumcircle and Euler line of 4ABC

17Interestingly, D disappears from the area formula, but appears in the equation for the line through the other two
triad members.
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• The E- and F -cevians through N (the former being the Euler line itself) are perpendicular,
and they trisect edges DF and EF .

• N quadrisects those cevians, and

|EN | = a2b2c2

3ρ3τ |uDvDwD|
|FN | = τ2

ρ3
|δaδbδc|

• Writing θPQ for the (signed) acute angle made by side-line PQ and the Euler line, we have18

(16) tan θDE : tan θEF : tan θFD ∝ 1 : −3 : 9

In particular, for an appropriate orientation,

tan θDE = τ3
δaδbδc uDvDwD

a2b2c2

• OD and OF are mutual reflections in the Euler line, and

|ODOF | = 1
2 |FN |

This is also the distance from D to the Euler line.

• The reflection of E in OD (point D′ in the figure) is the reflection of D in the Euler line; hence
it lies on the circumcircle. (It is in fact the fourth intersection of the circumcircle with the
circumhyperbola ABCEF ; the point is Kimberling’s X477.)

We can glean from these facts a concrete construction of the triad: First, construct D′ := X477.
19

Then D is the reflection of D′ in the Euler line. Point F ’s distance from the Euler line is |DD′|,
and its distance from line DD′ is one-third E’s distance to that line. (Figure 5.)

Figure 5. A construction of the triad

18The proportion can be gleaned from Figures 4 and 5. Individual values arise from the sums (9) and this formula:

τ3/2 tan θPQ =

(∑
cyc

a2

uDuPuQ

(
1

vPwQ
− 1

vQwP

))
/

(∑
cyc

δa
uPuQ

(
1

vPwQ
− 1

vQwP

))
19For instance, let the Euler line meet side-lines AB and AC at B′ and C′, then the line through A and the

circumcenter of 4AB′C′ meets the circumcircle at X110. (This is Randy Hutson’s 6th construction of X110. See
ETC’s X(110) entry.) The line through this point, parallel to the Euler line, meets the circumcircle again at D′.
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3. Conjugate Considerations

Let P+ and P− denote the isogonal and isotomic conjugates20 of a point P . The conjugates of
D, E, F , and half of the conjugates of those conjugates, are documented triangle centers:

D+ := X30 (Euler infinity point) D− := X3260 (D+)− := X1494 (D−)+ := −
E+ := X3 (circumcenter) E− := X69 (E+)− := X264 (E−)+ := X25

F+ := X399 (Parry reflection point) F− := X1272 (F+)− := − (F−)+ := −

Correspondingly, we use ± superscripts on individual barycentric coordinates of such conjugates:21

P+ = u+ : v+ : w+ :=
a2

u
:
b2

v
:
c2

w
P− = u− : v− : w− :=

1

u
:

1

v
:

1

w

As with the coordinates of D, E, F themselves, we ignore homogeneity in defining u±P , v±P , w±P in
terms of the specific expressions uP , vP , wP , allowing us to write non-homogeneous equations such
as these “flattened” forms of (2) and (3):

u+D + v+D + w+
D = 0 u+E + v+E + w+

E = τ u+F + v+F + w+
F = −ρ

2τ2

µ2

δau
−
D + δbv

−
D + δcw

−
D = −τ

2δ

µ2
δau
−
E + δbv

−
E + δcw

−
E = 0 δau

−
F + δbv

−
F + δcw

−
F =

6τ2δ

µ2

Concurrences. Triad points and their isoconjugates determine numerous concurrent lines.

• Lines DD−, EE−, FF− (ie, the three lines of the form PP− for triad point P ) concur at
D−. (Figure 6.) This property follows from (7), and it places our triad (and their isotomic
conjugates) on the circumcubic K− described in Section 5.

Line EE− also contains (E+)−, and FF− also contains (F+)−.

• Lines DD+, EE+, FF+ (ie, the three lines PP+) concur at D+, which is to say: they are
parallel to the Euler line; of course, EE+ is the Euler line. (Figure 6.) This follows from (8),
and it places the triad (and their isogonal conjugates) on the circumcubic K+. (Section 5.)

Line EE+ also contains (E−)+, and FF+ also contains (F−)+.

• Lines D+D+, D−D−, E+F+, E−F− (ie, P±P±? ) concur at D. (Figure 7.) Here, we interpret
D+D+ and D−D− as tangent lines to the circumcubics K+ and K−. (Tangent line D+D+ is
the asymptote of K+.)

E+F+ also contains (D−)+, and E−F− also contains (D+)−.

• Lines D+D−, E+F−, F+E− (ie, P±P∓? ) concur at a point not currently indexed in ETC; we’ll
call it Z. (Figure 8, left.) It has barycentric coordinates

δbvD(u−Ev
+
F − v

−
Eu

+
F ) − δcwD(w−Eu

+
F − u

−
Ew

+
F ) : · · · : · · ·

Line (D+)−(D−)+ also contains Z.

20Respective cevians through P and through P+ are mutual reflections in the corresponding angle bisectors of
4ABC. The points where respective cevians through P and those through P− meet the side-lines of 4ABC are
mutual reflections in the midpoints of the corresponding sides.

21Caveat: In the trilinear coordinate system, say P = h : j : k, the isogonal conjugate coordinates involve
simple reciprocation, P+ = 1

h
: 1

j
: 1

k
, so that the isogonal conjugate of P is sometimes denoted P−1. (In trilinear

coordinates, P− = 1
a2h

: 1
b2j

: 1
c2k

.) Hopefully, this note’s barycentric bias will not cause confusion.
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Figure 6

Figure 7

• Circles©EE+E− and©FF+F− (but not©DD+D−) meet the triangle’s circumcircle at the
Steiner Point, S := X99. (Figure 8, right.) The locus of all P —including the centroid, incenter,
and excenters— such that©PP+P− contains S is the Stammler circumquartic (Gibert’sQ6):

22

a2δa
u2

+
b2δb
v2

+
c2δc
w2

= 0

Line DE−F− also contains S.

22That E and F satisfy this equation, and that D does not, is stated previously in relation (5).
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Figure 8

Arbitrary Isoconjugation. Kimberling23 generalizes isogonal and isotomic conjugation via the
notion of isoconjugation with respect to a given triangle center Q. The operation takes point P to
a point we’ll denote P ◦, defined by24

P ◦ = u◦P : v◦P : w◦P :=
a3

uPuQ
:

b3

vP vQ
:

c3

wPwQ

Thus, P+ and P− are isoconjugates of P with respect to X1 = a : b : c (the incenter) and
X31 = a3 : b3 : c3. One can show that, lines DD◦, EE◦, FF ◦ concur if and only if Q lies on the
line25 X1X31, which has equation

(17)
uδa
a

+
vδb
b

+
wδc
c

= 0

For such Q, we can say further

• Lines DD◦, EE◦, FF ◦ (that is, lines PP ◦) concur at D◦. This places the triad on the
circumcubic K◦ described in Section 5.

• Lines D◦D◦ and E◦F ◦ (lines P ◦P ◦? ) meet at D. Here, D◦D◦ is the tangent at D◦ to K◦ above.

• If P× is the isoconjugate of P relative to some other point R on line X1X31, then D◦D×,
E◦F×, E×F ◦ (lines P ◦P×? ) concur at a point with barycentric coordinates

a3

u2Eu
2
Fu

2
Qu

2
R

(
uEuF (v−Ew

−
F − w

−
Ev
−
F )(u2Qv

−
Qw
−
Q − u2Rv

−
Rw
−
R)

−uQuR(v−Qw
−
R − w

−
Qv
−
R)(u2Ev

−
Ew
−
E − u2F v

−
Fw
−
F )

)
: · · · : · · ·

Line (D◦)×(D×)◦ also contains this point.

• In general, ©EE◦E× and ©FF ◦F× do not concur with ©ABC.

• As Q varies along X1X31, the loci of D◦, E◦, F ◦ are the circumconics ABCEF (the Yiu
hyperbola), ABCDE, ABCDF . (In the notation of the next section, P ◦ lies on conic ΓP? .)

23See the ETC Glossary “isoconjugate” entry.
24In trilinear coordinates, with P = h : j : k, the definition is a bit cleaner: P ◦ := 1

hhQ
: 1

jjQ
: 1

kkQ
.

25ETC’s “Central Lines” table identifies this line as L661, the trilinear pole of X662, and currently lists 149 triangle
centers on it.
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4. Circumconic Circumstances

We’ll begin with some facts about families of circumconics of 4ABC that pass through one of
our triad members.

• Any circumconic through E is a rectangular hyperbola; conversely, any rectangular circum-
hyperbola contains E.

• The center of a circum-hyperbola through E lies on the nine-point circle; specifically, it is the
midpoint of E and the hyperbola’s fourth intersection with the circumcircle of 4ABC.

• The circumconics through D (as with any fixed point on the circumcircle) have parallel axes
of symmetry. If θ is an angle formed by the major/transverse axis and the Euler line, then

cos 2θ =
τ3 δaδbδc
2ρ3 abc

• The center of a circumconic through D lies on the necessarily-rectangular hyperbola through
the circumcenter, the midpoints of the sides, and the midpoint of DE.26

• For circumconics through F , neither eccentricity nor axis direction are constant, but we have

(1− 2 cos 2θ) · eccentricity2 = 2

where θ is an angle made by the major/transverse axis and the Euler line.

Now, let’s consider three specific circumconics: Define ΓP , for triad member P , to be the cir-
cumconic through the other two triad members (Figure 9); the conic’s barycentric equation, using
our duality notation, is:

ΓP :
∑
cyc

a2δa
uuP?

= 0

Combining properties from above:

• ΓD —earlier dubbed the Yiu hyperbola and featured in the triad family portrait (Figure ??)—
is a rectangular hyperbola whose transverse axis makes a 45◦ angle with the Euler line; thus,
its asymptotes are parallel and perpendicular to that line.

• ΓF —known in the literature as the Jerabek hyperbola— is a rectangular hyperbola with axes
of symmetry parallel to those of ΓE .

Bonus fact about ΓD:

• If P is a point on ΓD, and A′, B′, C ′ are reflections of P in the respective lines parallel to the
Euler line through A, B, C, then lines AA′, BB′, CC ′ concur at another point of ΓD; namely,
the reflection of P in the conic’s center.

When P = E, the point of concurrence X477, the fourth point where the ΓD meets the
circumcircle. When P = F , this point is X5627, which ETC identifies as the Yiu Reflection
Point (which inspired the name Yiu hyperbola for ΓD.) In either case, the tangent to ΓD at P
is parallel to the line DP?.

26Since the circumcenter of4ABC is the orthocenter of the midpoint triangle, this conic-of-centers is a rectangular
hyperbola. The conic-of-centers for circumconics through any fixed P passes through the midpoints of the sides; the
conic-of-centers for any fixed P on the circumcircle passes through the circumcenter.
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Figure 9. Circumconics ΓD := ABCEF , ΓE := ABCFD, ΓF := ABCDE

Let OP be the center of ΓP . Some properties of OD and OF appear in Section 2.

• OF (X125) is the midpoint of DE. Its barycentric coordinates are:

δ2a
uE

:
δ2b
vE

:
δ2c
wE

• OD (X3258) is the reflection of OF in the Euler line.

δa
uD

(
1

vF
− 1

wF

)
:
δb
vD

(
1

wF
− 1

uF

)
:
δc
wD

(
1

uF
− 1

vF

)
• OE is not (yet!) in ETC.

1

uF

(
1

vF
− 1

wF

)2

:
1

vF

(
1

wF
− 1

uF

)2

:
1

wF

(
1

uF
− 1

vF

)2

Abusing notation to indicate component-wise arithmetic on the conic centers’ coordinates, we have

O2
D

OE ·OF
=

uEuF
u2D

:
vEvF
v2D

:
wEwF

w2
D

(
=
uEuE?

uDuD?

:
vEvE?

vDvD?

:
wEwE?

wDwD?

)
Finally, recall that the isotomic (or isogonal) conjugate of a line is a circumconic, and conversely.

Therefore, having previously observed (Section 3) that lines E−F−, D−F−, D−E− contain D, F ,
E, respectively, we know that ΓD, ΓE , ΓF contain D−, F−, E−; likewise, previous observations
imply that they contain D+, F+, E+. Succinctly,

ΓP contains P−? and P+
? .

Some consequences of this fact are explored in Section 5.
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Three more conics. For P a member of the triad, define ΦP as the circumconic through P whose
tangent line at P is perpendicular to the Euler line. Equations are as follows:

ΦD :
∑
cyc

a2uD
uF u

(
δbδcτ

2uF − a2b2c2
)

= 0 ΦP :
∑
cyc

a2uP
uD u

= 0 (for P = E,F )

Simplicity clearly disfavors D (as does Figure 10), and we can say more about the other cases: ΦP

and line DP meet the circumcircle at a point MP given by27

MP :=
u2P
δa

:
v2P
δb

:
w2
P

δc
(for P = E,F ) ME = X107

A bit more about ΦE and ΦF is said (and shown) in Section 5’s discussion of circumcubic K∅.

Figure 10. Circumconics ΦE and ΦF

5. Circumcubic Curiosities

Circumcubics K+ and K−. Bernard Gibert’s catalogue of cubics [9] opens with the isogonally-
self-conjugate Neuberg cubic,28 K1, herein denoted K+. The isotomically-self-conjugate K279 is
denoted K−. The equations are as follows:

K+ :
∑
cyc

u

uD

(
v2

b2
− w2

c2

)
= 0 K− :

∑
cyc

u

uD

(
v2 − w2

)
= 0 K± :

∑
cyc

u

uD

( v

v±
− w

w±

)
= 0

The curves are the loci of a point P such that line PP+ —respectively, PP−— contains D. As
noted in Section 3, and depicted in Figures 6 and 7, each contains the triad (and the appropriate
conjugates thereof).

27While ME = X107, point MF is not in ETC.
28Gibert notes that the cubic was first introduced in Joseph Jean Baptiste Neuberg’s 1884 paper “Mémoire sur le

tétraédre” in Mémoires de l’Académie de Belgique
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• Barring degeneracies in the triangle, D, E, F are the only (non-vertex) points on K− such
that the K− for each of 4PBC, 4APC, 4ABP is also a circumcubic of 4ABC.29 Thus, this
property characterizes our triad.

• Every (non-vertex) point P on K+ is such that the K+ of each of 4PBC, 4APC, 4ABP is
also a circumcubic of 4ABC; so, this property does not characterize the triad.30

Circumcubic K◦. As of this writing, Gibert’s catalogue documents only K+ and K− as irreducible
circumcubics containing the triad. However, invoking Section 3’s “arbitrary isoconjugation” yields
a continuum of such cubics that also pass through associated isoconjugates D◦, E◦, F ◦. The
equation, for isoconjugation with respect to Q on X1X31, is given by

(18) K◦ :
∑
cyc

u

uD

(
v2vQ
b3
−
w2wQ

c3

)
= 0

Since the D◦ for each Q necessarily lies on the Yiu hyperbola, ΓD, we can simplify the definition
of K◦ by taking D◦ on that hyperbola and defining E◦ and F ◦ via uDu

◦
D = uEu

◦
E = uFu

◦
F , etc.

With this approach, we can write the equation in a form directly comparable to the those given
above for K+ and K−.

K◦ :
∑
cyc

u

uD

(
v2

vDv◦D
− w2

wDw◦D

)
Cubic K◦ exhibits various features of K− and K+. In addition to those mentioned in Section 3,

and the decomposition described below, we note that the tangents at A, B, C concur at D. Also,
the tangent at D and the line EF concur with the tangents at the non-vertex points of intersection
with the triangle’s side-lines at another point on the cubic: namely, the D◦-Ceva-conjugate31 of D.

A trio of degenerate cases, one for each vertex, are worth mentioning. For vertex A (likewise, B
and C), we take D◦ as the other point where line AD meets the Yiu hyperbola. Then K◦ reduces
to the union of AD and the (non-circum)conic BCEE◦FF ◦. (Figure 11.) Their equations are as
follows:

K◦ (D◦ ∈ AD) :

(
v

vD
− w

wD

)(
u2

uEuF
+

vw

vDwD
− wu

wDuD
− uv

uDvD

)
= 0

K◦ (D◦ ∈ BD) :

(
w

wD
− u

uD

)(
v2

vEvF
− vw

vDwD
+

wu

wDuD
− uv

uDvD

)
= 0

K◦ (D◦ ∈ CD) :

(
u

uD
− v

vD

)(
w2

wEwF
− vw

vDwD
− wu

wDuD
+

uv

uDvD

)
= 0

29This result is by far the most difficult in this note to verify algebraically. One approach is to encode the condition
that A and its isotomic conjugate relative to 4PBC are collinear with 4PBC’s “D−” (that is, its X3260); likewise
with B and 4APC. Eliminating P ’s w-coordinate from the system leaves an 17000-term barycentric polynomial in
u and v that factors into expressions corresponding to solutions D, E, F ; a final, 1600-term factor lacks the required
symbolic symmetry to yield a triangle center, and so is extraneous. A more-direct demonstration is desirable.

30In contrast to the previous result, this one —when formulated in terms of tripolar coordinates— is an almost-
trivial consequence of the fact that each point P on K+ is such that Euler lines (and Brocard axes) of 4PBC,
4APC, 4ABP , and 4ABC concur. See [5], Corollary 6, wherein our K+ corresponds to their C2.

31See the ETC Glossary “Ceva conjugate” entry. The Q-Ceva-conjugate of P has barycentric coordinates

uP

(
−uP

uQ
+
vP
vQ

+
wP

wQ

)
: vP

(
uP

uQ
− vP
vQ

+
wP

wQ

)
: wP

(
uP

uQ
+
vP
vQ
− wP

wQ

)
The D+-Ceva-conjugate of D is Kimberling’s X2132; the D− counterpart is not currently listed in ETC.
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Observe that the conic component of each equation has no explicit reference to conjugate elements.
We can in fact describe the conic as the one passing through, for instance, BCEF and having
tangents at B and C concur at D; it happens to also include E◦ and F ◦.

Figure 11. Circumcubic K◦ for D◦ ∈ AD, the union of line AD and conic BCEE◦FF ◦

Circumcubics Ω−P , Ω+P , Ω◦P . Circumconic ΓD contains D−, E, F ; its isotomic conjugate line
Γ−D contains D, E−, F−. Therefore, the union of these sets is a (reducible) circumcubic containing
the triad points and their isotomic conjugates. This is, of course, true for each triad member. We
can express the unions, and their equations, thusly:

Ω−P := ΓP ∪ Γ−P?
→

∑
cyc

a2δa
uP?

vw ·
∑
cyc

a2δa
uP

u = 0

As a result, all three circumcubics belong to a pencil on the nine points A, B, C, D, E, F ,
D−, E−, F−. This pencil also contains K−. Any member of such a pencil is expressible as a
linear combination of any pair of members.32 The triad cubics, and K−, admit particularly-nice
decompositions:

Ω−D ∝ Ω−E + Ω−F K− ∝ Ω−E − Ω−F

As one might expect, an identical analysis goes through for cubics cobbled-together from our
circumconics and their isogonal conjugate lines.

Ω+P := ΓP ∪ Γ+
P?

→
∑
cyc

a2δa
uP?

vw ·
∑
cyc

δa
uP

u = 0

The pencil on A, B, C, D, E, F , D+, E+, F+ contains Ω+D, Ω+E , Ω+F , and K+, and we have

Ω+D ∝ Ω+E + Ω+F K+ ∝ Ω+E − Ω+F

And, generally, for isoconjugation P ◦ with respect to Q on line X1X31, we can define

Ω◦P := ΓP ∪ Γ◦P?
→

∑
cyc

a2δa
uP?

vw ·
∑
cyc

a2δa
uPuDu◦D

u = 0

32That is, if three members of the pencil have the equations p(u, v, w) = 0, q(u, v, w) = 0, r(u, v, w) = 0,
then r(u, v, w) ∝ αp(u, v, w) + β q(u, v, w) for some α and β (and constant of proportionality) that are symmetric
expressions in side-lengths a, b, c. In the decompositions presented, we abuse notation so that the name of a cubic
also represents the left-hand side of its equation.
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which gives rise to corresponding decompositions

Ω◦D ∝ Ω◦E + Ω◦F K◦ ∝ Ω◦E − Ω◦F

Circumcubic K∅. A final example of a (reducible) circumcubic through the triad members is
obvious but not-quite-trivial: define K∅ as the union of line EF and the circumcircle of 4ABC.

K∅ :
∑
cyc

a2δa
uDuEuF

u ·
∑
cyc

a2

u
= 0

Tangents to the curve at A, B, C do not concur, so K∅ is not an instance of K◦.
33 Nevertheless,

the cubic is self-isoconjugate, here with respect to Q (not on line X1X31 nor in ETC) given by:

Q :=
a3δa

uDuEuF
:

b3δb
vDvEvF

:
c3δc

wDwEwF

In particular, the cubic contains the Q-isoconjugates of the triad:

D∅ :=
uEuF
δa

: · · · : · · · E∅ :=
uFuD
δa

: · · · : · · · F∅ :=
uDuE
δa

: · · · : · · · = X1304

Some facts about these points:

• Point D∅ lies on the line EF . It is the non-vertex point common to circumcubics ΦE and ΦF

introduced (along with points ME and MF ) at the end of Section 4. For P = D or E, tangents
to ΦP at D∅ and MP meet at P∅

? . (Figure 12.)

Figure 12. Circumconics ΦE and ΦF again

• E∅ and F∅ lie on the circumcircle, and their constructions via concurrent lines are explained
under “Reflections and perspectors” in Section 7.

• Lines EF∅ and FE∅ meet at X477, the reflection of D in the Euler line (also, the fourth point
where the Yiu hyperbola, ΓD, meets the circumcircle). The tangent to K∅ at D meets EF at
the X477-Ceva-conjugate of D.

33The ∅ mark was chosen to evoke the fusion of line and circle. The visual assertion of “not K◦” is a nice bonus.
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• Line DE∅ is tangent at D to circumconics ΓE , and (by footnote 12) it contains the point
where EF meets ΓF . Likewise, DF∅ is tangent to ΓF and contains the point where EF meets
ΓE . (Figure 13, left.) The meeting points (neither of which is in ETC) have these coordinates

EF ∩ ΓF =
uDuF
uE

: · · · : · · · = DF

E
EF ∩ ΓE =

uDuE
uF

: · · · : · · · = DE

F

• Circles ©D∅EF (that is, line EF ), ©DE∅F , ©DEF∅ concur at a point X2132, the D+-
Ceva-conjugate of D; correspondingly, ©DE∅F∅ (the circumcircle), ©D∅EF∅, ©D∅E∅F
concur at the Q-isoconjugate of X2132. (Figure 13, right.)

Figure 13. Circumcubic K∅, the union of the circumcircle and line EF

6. Complex Combinations

Consider our4ABC embedded in the complex plane, and let Pn be the offset P−Xn for triangle
center Xn. We observe the following elementary symmetric offset relations:

An +Bn + Cn +Dn = 0 n = 6699

An +Bn + Cn + En = 0 n = 5

An +Bn + Cn + Fn = 0 n = 45694

AnBn +AnCn +AnDn +BnCn +BnDn + CnDn = 0 n ∈ {3, 125}

AnBnCn +AnBnFn +AnCnFn +BnCnFn = 0 n ∈ {1511, •, •}
The three linear relations effectively define GD := X6699, GE := X5 (the nine-point center), and

GF := X45694, such that each GP is the vertex centroid of ABCP ; geometrically, GP is the dilation
of P in 4ABC’s centroid G := X2 by scale factor 1/4. (Figure 14.) Each such GP is a shared
triangle center for triangles 4ABC, 4PBC, 4APC, 4ABP .

The quadratic relation highlights the fact that the four triangles defined by P = D actually
share a common circumcircle and Jerabek hyperbola (referred to as ΓF earlier in this note), hence
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Figure 14

have a common circumcenter X3 and hyperbola center OF = X125. The midpoint of these shared
points is GD. That the shared points lead to the uncomplicated offset relation seems non-obvious.

The cubic relation identifies X1511 (known as the Fermat crosssum; also, the midpoint of DF+,
the dilation of OD in GF by scale factor −2, and the dilation of D in circumcenter X3 by scale
factor −1/2) as a triangle center common to the triangles defined by P = F . Two other triangle
centers (not indexed in ETC) satisfy the cubic offset relation, but their barycentric representations
are a bit ugly; these centers are mutual reflections in OD, so that the triangle they form with X1511

has centroid GF .

Solving the counterpart quadratic and cubic offset relations involving other triad members yields
(non-indexed) triangle centers with complicated coordinates. On the other hand, it’s perhaps worth
noting that the triangles defined by P = F share rectangular hyperbola ΓD through ABCF , and
therefore center OD = X3258; this point gives the non-elementary cubic offset relation

3(An +Bn + Cn + Fn)(AnBn +AnCn +AnFn +BnCn +BnFn + CnFn)

= 2 (AnBnCn +AnBnFn +AnCnFn +BnCnFn) n = 3258

7. Miscellanea

Functionalities. If we treatXn as a point-valued function on a triangle’s vertices, then the defining
property of a tetradic center of 4ABC is

Xn(Xn(A,B,C), B,C) = A, Xn(A,Xn(A,B,C), C) = B, Xn(A,B,Xn(A,B,C)) = C

which, as we know, is satisfied by n = 4, 74, and 1138 (at least).

Matt F. [7] has observed the following about E = X4, given auxiliary point O:

(19) X4(A,B
′, C ′) = X4(A

′, B,C ′) = X4(A
′, B′, C) =: M
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where
A′ := X4(O,B,C) B′ := X4(A,O,C) C ′ := X4(A,B,O)

The common derived point has barycentric coordinates

M =
1(

−uO
uE

+ vO
vE

+ wO
wE

)
+ 2u+OvOwO

: · · · : · · ·

Replacing X4 with X74 or X1138 in (19) doesn’t work. This author is currently unaware of coun-
terpart relations for tetradic centers D and F .

Relatedly, ©AB′C ′, ©A′BC ′, ©A′B′C are concurrent for n = 4 and n = 74, but not n = 1138.
For n = 4, the point of concurrency has coordinates that curiously incorporate those of M above

1

u−M
(
u+O + v+O + w+

O

)
− u−O(uO + vO + wO)

(
u+E + v+E + w+

E

) : · · · : · · ·

For n = 74, the coordinates are exceedingly unwieldy. Note that, because X74 lies on the circum-
circle of its host triangle, the point of concurrency would be the direct analog of M for n = 74, if
such a point existed.

Reflections and perspectors. In the following, PA, PB, PC are the reflections of point P in the
4ABC’s side-lines BC, CA, AB. Also, calling points X, Y , Z “perspective” means that “4XY Z
is perspective with 4ABC”; that is, XA, Y B, ZC are concurrent at point called the perspector of
the two triangles.

• The locus of points P whose reflections PA, PB, PC are perspective is known to be K+.34

(So, the triad members are among these points.) For any such point P and corresponding
perspector P ′, the line PP ′ is parallel to the Euler line.

• Paul Yiu [18] observed that DA, DB, DC are collinear and perspective (and asserted that D is
the only point whose reflections have both properties); specifically, their line is perpendicular
to the Euler line at E. The perspector is D′ := X5627.

• Points EA, EB, EC lie on the circumcircle, and their perspector is E′ := E.

• Points FA, FB, FC have perspector F ′ := X14451.

• For (P,Q,R) some permutation of the triad, the circumcenters of©PAPBPC and©QAQBQC

are collinear with R?.
35 (Figure 15.) This is simply a repackaging of some concurrence results

from Section 3, since, for any point P , the circumcenter of ©PAPBPC is P+, the isogonal
conjugate of P .

Also, ©DADBDC contains E, and ©EAEBEC contains D, but ©FAFBFC contains no triad
member.

Some related facts

• Lines EAFA, EBFB, ECFC concur at a point U (not indexed in ETC), and lines DAEA, DBEB,
DCEC concur at W = X1304.

Lines FADA, FBDB, FCDC do not concur. However, they determine a triangle perspective
with 4ABC, with perspector V (not in ETC).

34See Gibert [9], “K001”.
35Of course, we must make appropriate accommodation for the fact that “circle” ©DADBDC is a line and its

“circumcenter” D+ is the Euler line’s point at infinity.
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Figure 15

Points U , V , W lie on the circumcircle. (Figure ??.) Their coordinates are as follows:36

U =
uDuF
δa

: · · · : · · · W =
uDuE
δa

: · · · : · · · V =
uDuF

δa (6τ2δbδcuF − a2b2c2)
: · · · : · · ·

• Generally, ©PABC, ©PBCA, ©PCAB, ©PAPBPC concur at a point with coordinates
uP(

−uP
uE

+ vP
vE

+ wP
wE

)
(uP + vP + wP )−

(
u2
P

uE
+

v2P
vE

+
w2

P
wE

) : · · · : · · ·

For P = D, this point is E = E′. For P = F , the point is D′. For P = E, the expression
for the point becomes undefined (understandably, because the four circles coincide with the
circumcircle); however, as P approaches E along K+, the point of concurrency approaches
X1141, the Gibert Point.

• The Yiu hyperbola (ΓD) contains D′ and E′ = E (the latter by definition), but not F ′. Conic
ΓF contains E′ = E by definition, but neither D′ nor F ′; conic ΓE contains none of D′, E′, F ′.

A Search for Centers. A note about tetradic centers should probably include a few words about
the search for other such centers. These are those words ...

Triad members D, E, F are in a class of triangle centers whose barycentric coordinates are
homogeneous in the squares of side-lengths of 4ABC; this is convenient in that it avoids messy
invocations of the square root. We can write the coordinates of such a center, T , thusly:

T := f2
(
a2, b2, c2

)
: f2

(
b2, c2, a2

)
: f2

(
c2, a2, b2

)
for some homogeneous rational function such that f2(x, y, z) = f2(x, z, y); we may take f2 to have
degree −1. Applying the function to 4TBC, the resulting T -center will have these barycentric
coordinates (relative to 4ABC):

36That’s not a typographical error. While points V and W have coordinates derived from those of the points that
determine them, point U —determined by E and F— has coordinates derived from those of D and F . Appealing to
triadic duality doesn’t seem to make sense of this situation.
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T ′ := uT f2
(
a2, b̄2, c̄2

)
: vT f2

(
a2, b̄2, c̄2

)
+ (uT + vT + wT )f2

(
b̄2, c̄2, a2

)
: wT f2

(
a2, b̄2, c̄2

)
+ (uT + vT + wT )f2

(
c̄2, a2, b̄2

)
where we have

b̄2 := |TC|2 =
a2v2T + b2u2T + (a2 + b2− c2)uT vT

(uT + vT +wT )2
c̄2 := |TB|2 =

a2w2
T + c2u2T + (a2− b2 + c2)uTwT

(uT + vT +wT )2

To make T tetradic, “all we need to do” is choose f2 so that the last two barycentric coordinates
of T ′ are identically zero for all a, b, c (and the first component is non-zero).37 In slightly-more-
compact form, we seek solutions to this functional system:

−
f2
(
a2, b̄2, c̄2

)
f2 (a2, b2, c2) + f2 (b2, c2, a2) + f2 (a2, b2, c2)

=
f2
(
b̄2, c̄2, a2

)
f2 (b2, c2, a2)

=
f2
(
c̄2, a2, b̄2

)
f2 (c2, a2, b2)

A brute-force search for such solutions quickly gets out of hand.

• If the numerator of f2 has degree 0, we can determine without too much difficulty that the
function must have this form (up to a multiplied constant):

f2(x, y, z) =
1

x− (y + z)

Therefore, triad member E is the only tetradic center for this case.

• If the numerator of f2 has degree 1, then already the situation explodes in symbolic complexity.
Consider f2 in the form

f2(x, y, z) =
h1x+ h2(y + z)

k1x2 + k2x(y + z) + k3(y + z)2 + k4yz

Expanding an ostensibly-vanishing coordinate of T ′ using this function yields a polynomial with
over three million terms; whether it factors is beyond this author’s available computing power
to determine. Gathering terms by apbqcr —each coefficient of which must vanish— yields
just-over 700 equations in the hi and ki. Assuming38 this author has correctly performed
the appropriate casework, the equations reveal no new tetradic centers; rather, they merely
reconfirm the tetradic nature of triad members D and (via simplification of f2) E, as shown:

( h1, h2 ; k1, k2, k3, k4 ) f2(x, y, z) T

( 1, 0 ; 2,−1,−1, 4 )
x

2x2 − x(y + z)− (y − z)2
D

( h1, h2 ; h1, h2 − h1,−h2, 0 )
1

x− (y + z)
E

The extraneous solutions have these forms39

37We can therefore ignore instances of T on the line at infinity, since such points have uT + vT +wT = 0, causing
all coordinates of T ′ to vanish simultaneously.

38The reader is advised to heed the wisdom of Felix Unger in this regard.
39For X524, we can ignore the denominator of f2 since it is symmetric in x, y, z.
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( h1, h2 ; k1, k2, k3, k4 ) f2(x, y, z) T

( 2,−1 ; 1,−2, 1,−4 )
2x− (y + z)

x2 + y2 + z2 − 2xy − 2yz − 2zx
X524

( h1, h2 ; 1,−1, 0, 1 )
h1x+ h2(y + z)

(x− y)(x− z)
−

• If the numerator of f2 has degree 3 or more, then brute-force symbolic manipulation seems
impractical.
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